OpenAIRE is about to release its new face with lots of new content and services.
During September, you may notice downtime in services, while some functionalities (e.g. user registration, login, validation, claiming) will be temporarily disabled.
We apologize for the inconvenience, please stay tuned!
For further information please contact helpdesk[at]openaire.eu

fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
E. E. Maeda; X. Ma; F. H. Wagner; H. Kim; T. Oki; D. Eamus; A. Huete (2017)
Publisher: Copernicus Publications
Journal: Earth System Dynamics
Languages: English
Types: 0038
Subjects: QE500-639.5, RAIN-FORESTS, QE1-996.5, VEGETATION, Geology, WATER-BALANCE, Q, Dynamic and structural geology, TROPICAL FORESTS, Science, PHOTOSYNTHETIC SEASONALITY, 1171 Geosciences, MODEL, FLUX TOWER, EVAPORATION, CANOPY STRUCTURE, MODIS
Evapotranspiration (ET) of Amazon forests is a main driver of regional climate patterns and an important indicator of ecosystem functioning. Despite its importance, the seasonal variability of ET over Amazon forests, and its relationship with environmental drivers, is still poorly understood. In this study, we carry out a water balance approach to analyse seasonal patterns in ET and their relationships with water and energy drivers over five sub-basins across the Amazon basin. We used in-situ measurements of river discharge, and remotely sensed estimates of terrestrial water storage, rainfall, and solar radiation. We show that the characteristics of ET seasonality in all sub-basins differ in timing and magnitude. The highest mean annual ET was found in the northern Rio Negro basin (~ 1497 mm year−1) and the lowest values in the Solimões River basin (~ 986 mm year−1). For the first time in a basin-scale study, using observational data, we show that factors limiting ET vary across climatic gradients in the Amazon, confirming local-scale eddy covariance studies. Both annual mean and seasonality in ET are driven by a combination of energy and water availability, as neither rainfall nor radiation alone could explain patterns in ET. In southern basins, despite seasonal rainfall deficits, deep root water uptake allows increasing rates of ET during the dry season, when radiation is usually higher than in the wet season. We demonstrate contrasting ET seasonality with satellite greenness across Amazon forests, with strong asynchronous relationships in ever-wet watersheds, and positive correlations observed in seasonally dry watersheds. Finally, we compared our results with estimates obtained by two ET models, and we conclude that neither of the two tested models could provide a consistent representation of ET seasonal patterns across the Amazon.
  • No references.
  • No related research data.
  • No similar publications.
Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok