Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Olawale Bolaji; Oluwafisayo Owolabi; Elijah Falayi; Emmanuel Jimoh; Afolabi Kotoye; Olumide Odeyemi; Babatunde Rabiu; Patricia Doherty; Endawoke Yizengaw; Yosuke Yamazaki; Jacob Adeniyi; Rafiat Kaka; Kehinde Onanuga (2017)
Publisher: Copernicus Publications
Types: Article
Subjects: Geophysics. Cosmic physics, Q, Science, Physics, QC1-999, QC801-809
In this work, we investigated the veracity of an ion continuity equation in controlling equatorial ionization anomaly (EIA) morphology using total electron content (TEC) of 22 GPS receivers and three ground-based magnetometers (Magnetic Data Acquisition System, MAGDAS) over Africa and the Middle East (Africa–Middle East) during the quietest periods. Apart from further confirmation of the roles of equatorial electrojet (EEJ) and integrated equatorial electrojet (IEEJ) in determining hemispheric extent of EIA crest over higher latitudes, we found some additional roles played by thermospheric meridional neutral wind. Interestingly, the simultaneous observations of EIA crests in both hemispheres of Africa–Middle East showed different morphology compared to that reported over Asia. We also observed interesting latitudinal twin EIA crests domiciled at the low latitudes of the Northern Hemisphere. Our results further showed that weak EEJ strength associated with counter electrojet (CEJ) during sunrise hours could also trigger twin EIA crests over higher latitudes.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • African Geodetic Reference Frame: available at: http://www. afrefdata.org, last access: 18 February 2015.
    • Anderson, D., Anghel, A., Yumoto, K., Ishitsuka, M., and Kudeki, E.: Estimating day time vertical ExB drift velocities in the equatorial F-region using ground-based magnetometer observations, Geophys. Res. Lett., 29, 37-1-37-4, doi:10.1029/2001GL014562, 2002.
    • Appleton, E. V.: Two anomalies in the ionosphere, Nature, 157, 691-693, 1946.
    • Balan, N. and Iyer, K. N.: Equatorial anomaly in ionospheric electron content and its relation to dynamo currents, J. Geophys. Res., 88, 10259-10262, 1983.
    • Barbara, A. K., Devi, M., Bardoli, P., and Rehman, K.: Ionosheric effect observed at Gauhati during the solar eclipse of February 16, 1980, Proc Int. Symp. Beacon Satellite studies on the Earth's Environment, 387 pp., 1980.
    • Batista, I. S., Diogo, E. M., Souza, J. R., Abdu, M. A., and Bailey, G. J.: Equatorial ionization anomaly: The role of thermospheric wind and the effect of the geomagnetic field secular variation, Aeronomy of the Earth's Atmosphere and Ionosphere, Springer Dordrecht Heidelberg, London New York, 2011.
    • Bolaji, O. S., Adeniyi, J. O., Radicella, S. M., and Doherty P. H.: Variability of total electron content over an equatorial West African station during low solar activity, Radio Sci. 47, RS1001, doi:10.1029/2011RS004812, 2012.
    • Bolaji, O. S., Adeniyi, J. O., Radicella, S. M., and Doherty, P. H.: Total electron content over and magnetic field intensity over Ilorin, Nigeria, J. Atmos. Sol.-Terr. Phy., 98, 1-11, 2013.
    • Bolaji, O. S., Rabiu, A. B., Bello, O. R., Yoshikawa, A., Yumoto, K., Odeyemi, O. O., and Ogunmodimu O.: Spatial variability of solar quiet fields along 960 magnetic meridian in Africa: Results from MAGDAS, J. Geophys. Res., 120, 3883-3898, doi:10.1002/2014JA020728, 2015.
    • Bramley, E. N. and Peart, M.: Diffusion and electromagnetic drift in the equatorial F2-region, J. Atmos. Terr. Phys., 27, 1201, doi:10.1016/0021-9169(65)90081-4, 1965.
    • Bramley, E. N. and Young, M.: Winds and electromagnetic drifts in the equatorial F2-region, J. Atmos. Terr. Phys., 30, 99-111, doi:10.1016/0021-9169(68)90044-5, 1968.
    • Chen, C. H., Liu, J. Y., Yumoto, K., Lin, C. H., and Fang, T. W.: Equatorial ionization anomaly of the total electron content and equatorial electrojet of ground-based geomagnetic field strength, J. Atmos. Terr. Phys., 70, 2172-2183, 2008.
    • de Abreu, A. J., Fagundes, P. R., Gende, M., Bolaji, O. S., de Jesus, R., and Brunini, C.: Investigation of ionospheric response to two moderate geomagnetic storms using GPS-TEC measurements in the South American and African sectors during the ascending phase of solar cycle 24, Adv. Space Res., 53, 1313-1328, doi:10.1016/j.asr.2014.02.011, 2014.
    • de Paula, E. R., Jonah, O. F., Moraes, A. O., Kherani, E. A., Fejer, B. G., Abdu, M. A., Muella, M. T. A. H., Batista, I. S., Dutra, S. L. G., and Paes, R. R.: Low-latitude scintillation weakening during sudden stratospheric warming events, J. Geophys. Res.- Space, 120, 2212-2221, doi:10.1002/2014JA020731, 2015.
    • Dunford, E.: The relationship between the ionospheric equatorial anomaly and the E-region current system, J. Atmos. Terr. Phys., 29, 1489-1498, 1967.
    • ICSWSE (International Centre for Space Weather Science and Education): Kyushu University, Japan, available at: http://magdas. serc.kyushu-u.ac.jp/, last access: 16 March 2011.
    • International GNSS service: available at: http://www.igs.org, last access: 17 October 2016.
    • Joseph, O. O., Yamazaki, Y., Cilliers, P., and Mito, O. C.: A study on the response of the equatorial ionization anomaly over the East Africa sector during the geomagnetic storm of November 13, 2012, Adv. Space Res., 55, 2889-2898, doi:10.1016/j.asr.2015.03.001, 2015.
    • Lee, C. C. and Reinisch, B. W.: Quiet-condition hmF2, NmF2, and B0 variations at Jicamarca and comparison with IRI-2001 during solar maximum, J. Atmos. Terr. Phys., 68, 2138-2146, doi:10.1016/j.jastp.2006.07.007, 2006.
    • Lei, J., Wang, W., Burns, A. G., Solomon, S. C., Richmond, A. D., Wiltberger, M., Goncharenko, L. P., Coster, A., and Reinisch, B. W.: Observations and simulations of the ionospheric and thermospheric response to the December 2006 geomagnetic storm: Initial phase, J. Geophys. Res., 113, A01314, doi:10.1029/2007JA012807, 2008.
    • Martyn, D. F.: Atmospheric tides in the ionosphere - I. Solar tides in the F2 region, P. R. Soc. Lond. A, 189, 241-260, 1947.
    • Moffett, R. J. and Hanson, W. B.: Effect of ionization transport on the equatorial F-region, Nature, 206, 705-706, doi:10.1038/206705a0, 1965.
    • Pedatella, N. M., Liu, H. L., Sassi, F., Lei, J., Chau, J. L., and Zhang, X.: Ionosphere variability during the 2009 SSW: Influence of the lunar semidiurnal tide and mechanisms producing electron density variability, J. Geophys. Res.-Space, 119, 3828- 3843, doi:10.1002/2014JA019849, 2014.
    • Radicella, S. M. and Adeniyi, J. O.: Equatorial ionospheric electron density below the F2 peak, J. Geophys. Res., 34, 1153-1163, 1999.
    • Raghavarao, R., Nageswararao, J., Hanumath, S., Vyas, G. D., and Sriramarao, M.: Role of equatorial ionization anomaly in the initiation of equatorial spread F, J. Geophys. Res.-Space, 93, 5959- 5964, 1988.
    • Rajaram G.: Structure of the equatorial F-region, topside and bottomside-a review, J. Atmos. Terr. Phys., 39, 1125-1144, doi:10.1016/0021-9169(77)90021-6, 1977.
    • Rama Rao, P. V. S., Das Gupta, A., Klobuchar, J. A., and Rastogi, R. G.: Electrojet Control over the Equatorial anomally in TEC and equivalent slab thickness, Proc. Int. Symp. Beaco Satellite studies on Earth's Environment (India), National Physical Laboratory of India, New Delhi, 393-400, 1984.
    • Rama Rao, P. V. S., Niranjan, K., Ramana Rao, B. V., Rao, B. V. P. S., and Prosad, D. S. V. V. D.: Study of the Solar Cycle Variation of some Ionospheric Phenomena Observed in TEC and Scintillation measurements made from low latitude station, Waltair (17.7 N), India, Proc URS/PS Conference, Sydney, Australlia, 1985.
    • Rastogi, R. G. and Klobuchar, J. A.: Ionospheric electron content within the equatorial F2 layer anomaly belt, J. Geophys. Res., 95, 45-52, 1990.
    • Rishbeth, H.: Atmospheric composition and F layer of the ionosphere, Planet. Space Sci., 9, 149-152, doi:10.1016/0032- 0633(62)90002-8, 1962.
    • Rush, C. M., Rush, S. V., Lyons, L. R., and Venkateswaran, S. V.: Equatorial anomaly during a period of declining solar activity, Radio Sci., 4, 824-841, doi:10.1029/RS004i009p00829, 1969.
    • Sethia, G., Rastogi, R. G., Deshpande, M. R., and Chandra, H.: Equatorial electrojet control of the low latitude ionosphere, J. Geomagn. Geoelectr., 32, 207-216, doi:10.5636/jgg.32.207, 1980.
    • Skinner, N. J.: Measurements of total electron content near the magnetic equator, Planet Space Sci. 14, 1123-1129, doi:10.1016/0032-0633(66)90026-2, 1966.
    • Uemoto, J., Maruyama, T., Saito, S., Ishii, M., and Yoshimura, R.: Relationships between pre-sunset electrojet strength, prereversal enhancement and equatorial spread-F onset, Ann. Geophys., 28, 449-454, doi:10.5194/angeo-28-449-2010, 2010.
    • Venkatesh, K., Fagundes, P. R., Prasad, D. S. V. V. D., Denardini, C. M, de Abreu, Jesus R., and Gende, M.: Day-to-day variability of equatorial electrojet and its role on the day-to-day characteristics of the equatorial ionization anomaly over the Indian and Brazilian sectors, J. Geophys. Res.-Space, 120, 9117-9131, doi:10.1002/2015JA021307, 2015.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article