Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Koepke, P.; Garhammer, M.; Hess, M.; Roeth, E.-P. (2010)
Publisher: EGU
Languages: English
Types: Article
Subjects: Chemistry, DOAJ:Earth and Environmental Sciences, QD1-999, G, Geography. Anthropology. Recreation, J, QC801-809, Geophysics. Cosmic physics, Physics, GE1-350, DOAJ:Environmental Sciences, Environmental sciences, QC1-999
ddc: ddc:550
Photolysis frequencies for NO2 are modeled for the conditions in urban streets, which are taken into account as canyons with variable height and width. The effect of a street canyon is presented with absolute values and as a ratio RJ of the photolysis frequency within the street compared to that with free horizon. This allows further use of the existing photolysis parameterizations. Values are presented for variable solar elevation and azimuth angles, varying atmospheric conditions and different street properties. The NO2 photolysis frequency in a street depends strongly on the relative width of the street and its orientation towards the sun. Averaged over atmospheric conditions and street orientation, the NO2 photolysis frequency is reduced in comparison with the values for free horizon: to less than 20% for narrow skyscraper streets, to about 40% for typical urban streets, and only to about 80% for garden streets. A parameterization with the global solar irradiance is given for the averaged RJ values.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Aida, M.: Urban albedo as function of the urban structure, Boundary Layer Meteorology, 23(4), 405-413, 1982
    • Bogumil, K., Orphal, J., Homann, T., Voigt, S., Spietz, P., Fleischmann, O. C., Vogel, A., Hartmann, M., Bovensmann, H., Frerick, J., and Burrows, J. P.: Measurement of molecular absorption spectra with the SCIAMACHY pre-flight model: Instrument characterization and reference data for atmospheric remote sensing in the 230-2380 nm region, J. Photochem. Photobiol. A, 157, 167-184, 2003
    • Bucars, N.: Regionale und lokale Albedo im UV-Spektralbereich, Diploma-thesis, Meteorolog. Inst. Univ. Munich, 46 pp., 2006.
    • De Backer, H., Koepke, P., Bais, A., de Cabo, X., Frei, T., Gillotay, D., Haite, C., Heikkila¨, A., Kaqzantzidis, A., Koskela, T., Kyro¨, E., Lapeta, b., Lorente, J., Masson, K., Mayer, B., Plets, H., Redondas, A., Renaud, A., Schauberger, G., Schmalwieser, G., Schwander, H., and Vanicek, K., Comparison of measured and modeled UV indices for the assessment of health risks, Meteorol. Appl., 8, 267-277, 2001.
    • Elbern, H., Strunk, A., Schmidt, H., and Talagrand, O.: Emission rate and chemical state estimation by 4-dimensional variational inversion, Atmos. Chem. Phys., 7, 3749-3769, doi:10.5194/acp7-3749-2007, 2007.
    • Feister, U. and Grewe, R.: Spectral albedo measurements in the UV and visible region over different types of surfaces, Photochem. Photobiol., 62(4), 736-744, 1995.
    • Hess, M., Koepke, P., and Schult, I.: Optical Properties of Aerosols and Clouds: The Software Package OPAC, B. Am. Meteorol. Soc., 79(5), 831-844, 1998.
    • Hess, M. and Koepke, P.: Modelling UV irradiances on arbitrarily oriented surfaces: effects of sky obstructions, Atmos. Chem. Phys., 8, 3583-3591, doi:10.5194/acp-8-3583-2008, 2008.
    • Iqbal, M.: An introduction to solar radiation, Academic Press, Toronto, 1983.
    • Keller-Rudek, H. and G. M. Moortgat, MPI-Mainz UV-VIS Spectral Atlas of Gaseous Molecules, www.atmosphere.mpg.de/enid/ 2295, 2010
    • Kirsch, M., Korth, H.-G., Sustmann, R., and de Groot, H.: The Pathobiochemistry of Nitrogen Dioxide, Biol. Chem., 383, 389- 399, 2002
    • Koepke, P., Bais, A., Balis, D., Buchwitz, M., Backer, H. D., Cabo, X. D., Eckert, P., Erikson, P., Gillotay, D., Heikkila¨, A., Koskela, T., Lapeta, B., Littynska, Z., Lorente, J., Mayer, B., Renaud, A., Ruggaber, A., Schauberger, G., Seckmeyer, G., Seifert, P., Schmalwieser, A., Schwander, H., Vanicek, K., and Weber, M.: Comparison of models used for UV Index calculations, Photochem. Photobiol., 67 (6), 657-662, 1998.
    • Koepke, P., Anwender, D., Mech, M., Oppenrieder, A., Reuder, J., Ruggaber, A., Schreier, M., Schwander, and H., Schween, J.: Actual state of the UV radiation transfer model package STAR, in: IRS2004: Current Problems in Atmospheric Radiation, edited by: Fischer, H. and Sohn, B.-J., A. Deepak Publ., Hampton, USA, 71-74, 2006.
    • Mech, M. and Koepke, P.: Model for UV irradiance on arbitrarily oriented surfaces, Theor. Appl. Climatol., 77, 151-158, 2004.
    • Me´rienne, M. F., Jenouvrier, A., and Coquart, B.: The NO2 absorption spectrum: Absorption cross-sections at ambient temperature in the 300-500 nm region, J. Atmos. Chem. 20, 281-297, 1995.
    • Ro¨th, E.-P.: Description of the Anisotropic Radiation Transfer Model ART to Determine Photodissociation Coefficients, Ber. Forschungszentrum Ju¨lich Ju¨l-3960, ISSN 0944-2952, 2002.
    • Ruggaber, A., Dlugi, R., and Nakajima, T.: Modelling radiation quantities and photolysis frequencies in the troposphere, J. Atmos. Chem., 18, 171-210, 1994.
    • Schulze, R.: UV-Strahlenklima, in: Ultraviolette Strahlen, Kiefer, J. (Hrsg.), Walter de Gruyther, Berlin, Germany, 26-27, 1977.
    • TA-Luft, Technische Anleitung zur Reinhaltung der Luft, Germany, GMBI Heft 25-29, 511-605, 2002.
    • Trebs, I., Bohn, B., Ammann, C., Rummel, U., Blumthaler, M., Ko¨nigstedt, R., Meixner, F. X., Fan, S., and Andreae, M. O.: Relationship between the NO2 photolysis frequency and the solar global irradiance, Atmos. Meas. Tech., 2, 725-739, doi:10.5194/amt-2-725-2009, 2009.
    • Troe, J.: Are Primary Quantum Yields of NO2 Photolysis at λ≤398 nm Smaller than Unity?, Z. Phys. Chem., 214, 573-581, 2000.
    • Woods, T. N., Prinz, D. K., Rottman, G. J., London, J., Crane, P. C., Cebula, R.P.,, Hilsenrath, E., Brueckner, G. E., Andrews, M. D., White, O. R., Van Hoosier, M. E., Floyd, L. E., Herring, L. C., Knapp, B. G., Pankratz, C. K., and Reiser, P. A., Validation of the UARS solar ultraviolet irradiances: Comparison with the Atlas 1 and 2 measurements, J. Geophys. Res., 101, 9541-9570, 1996.
  • No related research data.
  • No similar publications.