LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
A. G. Georgiadi; N. Koronkevich; I. P. Milyukova; E. A. Barabanova (2014)
Publisher: Copernicus Publications
Journal: Proceedings of the International Association of Hydrological Sciences
Languages: English
Types: Article
Subjects: GE1-350, QE1-996.5, Environmental sciences, Geology
An approach is presented for carrying out a long-term projection of river runoff changes in large Russian river basins in the first three decades of the 21st century. These changes may be caused by climate warming and socio-economic factors. The approach utilizes a method for scenario estimation of runoff changes with a range of possible climate warming effects. This range is chosen by generalizing calculation results obtained by using an ensemble of global climate models for two contrasting scenarios (A2 and B1) of globally-averaged air temperature rises. The approach also utilizes a method for alternative scenario estimation for water consumption as related to socio-economic changes. The estimates show that the expected runoff changes in the first third of this century due to climate warming scenarios can compensate the runoff decrease caused by the realization of some of the scenarios for socio-economic changes in the Volga River basin. The same compensation does not occur in the Don River basin, where negative effects are expected for the regional ecology.
  • No references.
  • No related research data.
  • No similar publications.