Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Klos, Anna; Hunegnaw, Addisu; Teferle, Felix Norman; Abraha, Kibrom Ebuy; Ahmed, Furqan; Bogusz, Janusz (2016)
Languages: English
Types: Conference object
Subjects: Time Series Analysis, : Sciences de la terre & géographie physique [G02] [Physique, chimie, mathématiques & sciences de la terre], : Earth sciences & physical geography [G02] [Physical, chemical, mathematical & earth Sciences], Atmospheric Water Vapour, Climate, Stochastic Noise, Global Navigation Satellite Systems
Zenith Total Delay (ZTD) time series, derived from the re-processing of Global Positioning System (GPS) data, provide valuable information for the evaluation of global atmospheric reanalysis products such as ERA-Interim. Identifying the correct noise characteristics in the ZTD time series is an important step to assess the "true" magnitude of ZTD trend uncertainties. The ZTD residual time series for 1995–2015 are generated from our homogeneously re-processed and homogenized GPS time series from over 700 globally distributed stations classified into five major climate zones. The annual peak of ZTD data ranges between 10 and 150 mm with the smallest values for the polar and Alpine zone. The amplitudes of daily curve fall between 0 and 12 mm with the greatest variations for the dry zone. The autoregressive process of fourth order plus white noise model were found to be optimal for ZTD series. The tropical zone has the largest amplitude of autoregressive noise (9.59 mm) and the greatest amplitudes of white noise (13.00 mm). All climate zones have similar median coefficients of AR(1) (0.80 ± 0.05) with a minimum for polar and Alpine, which has the highest coefficients of AR(2) (0.27 ± 0.01) and AR(3) (0.11 ± 0.01) and clearly different from the other zones considered. We show that 53 of 120 examined trends became insignificant, when the optimum noise model was employed, compared to 11 insignificant trends for pure white noise. The uncertainty of the ZTD trends may be underestimated by a factor of 3 to 12 compared to the white noise only assumption.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article