LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
T. R. Marthews; S. J. Dadson; B. Lehner; S. Abele; N. Gedney (2015)
Publisher: Copernicus Publications
Journal: Hydrology and Earth System Sciences
Languages: English
Types: Article
Subjects: T, G, GE1-350, Geography. Anthropology. Recreation, Environmental technology. Sanitary engineering, Environmental sciences, Technology, TD1-1066
Modelling land surface water flow is of critical importance for simulating land surface fluxes, predicting runoff and water table dynamics and for many other applications of Land Surface Models. Many approaches are based on the popular hydrology model TOPMODEL (TOPography-based hydrological MODEL), and the most important parameter of this model is the well-known topographic index. Here we present new, high-resolution parameter maps of the topographic index for all ice-free land pixels calculated from hydrologically conditioned HydroSHEDS (Hydrological data and maps based on SHuttle Elevation Derivatives at multiple Scales) data using the GA2 algorithm (GRIDATB 2). At 15 arcsec resolution, these layers are 4 times finer than the resolution of the previously best-available topographic index layers, the compound topographic index of HYDRO1k (CTI). For the largest river catchments occurring on each continent we found that, in comparison with CTI our revised values were up to 20% lower in, e.g. the Amazon. We found the highest catchment means were for the Murray–Darling and Nelson–Saskatchewan rather than for the Amazon and St. Lawrence as found from the CTI. For the majority of large catchments, however, the spread of our new GA2 index values is very similar to those of CTI, yet with more spatial variability apparent at fine scale. We believe these new index layers represent greatly improved global-scale topographic index values and hope that they will be widely used in land surface modelling applications in the future.

Share - Bookmark

Cite this article