Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Zbíral, Jiří; Čižmár, David; Malý, Stanislav; Obdržálková, Elena (2016)
Languages: English
Types: Article
Determining and characterizing soil organic matter (SOM) cheaply and reliably can help to support decisions concerning sustainable land management and climate policy. Glomalin, a glycoprotein produced by arbuscular mycorrhizal fungi, was recommended as a promising indicator of SOM quality. But extracting glomalin from and determining glomalin in soils using classical chemical methods is too complicated and time consuming and therefore limits the use of this parameter in large scale surveys. Near infrared spectroscopy (NIRS) is a very rapid, non-destructive analytical technique that can be used to determine many constituents of soil organic matter.

Representative sets of 84 different soil samples from arable land and grasslands and 75 forest soils were used to develop reliable NIRS calibration models for glomalin. One calibration model was developed for samples with a low content of glomalin (arable land and grasslands), the second for soils with a high content of glomalin (forest soils), and the third calibration model for all combined soil samples. Calibrations were validated and optimized by leave-one-sample-out-cross-validation (LOSOCV) and by the external validation using eight soil samples (arable land and grassland), and six soil samples (forest soils) not included in the calibration models.

Two different calibration models were recommended. One model for arable and grassland soils and the second for forest soils. No statistically significant differences were found between the reference and the NIRS method for both calibration models. The parameters of the NIRS calibration model (RMSECV = 0,70 and R = 0,90 for soils from arable land and grasslands and RMSECV = 3,8 and R = 0,94 for forest soils) proved that glomalin can be determined directly in air-dried soils by NIRS with adequate trueness and precision.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Download from

Cite this article

Collected from