LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Korolev, Alexei; Khain, Alex; Pinsky, Mark; French, Jeffrey (2016)
Publisher: Copernicus Publications
Languages: English
Types: Article
Subjects: Chemistry, QD1-999, Physics, QC1-999
The present study considers final stages of in-cloud mixing in the framework of classical concept of homogeneous and extreme inhomogeneous mixing. Simple analytical relationships between basic microphysical parameters were obtained for homogeneous and extreme inhomogeneous mixing based on the adiabatic consideration. It was demonstrated that during homogeneous mixing the functional relationships between the moments of the droplets size distribution hold only during the primary stage of mixing. Subsequent random mixing between already mixed parcels and undiluted cloud parcels breaks these relationships. However, during extreme inhomogeneous mixing the functional relationships between the microphysical parameters hold both for primary and subsequent mixing. The obtained relationships can be used to identify the type of mixing from in situ observations. The effectiveness of the developed method was demonstrated using in situ data collected in convective clouds. It was found that for the specific set of in situ measurements the interaction between cloudy and entrained environments was dominated by extreme inhomogeneous mixing.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Andrejczuk, M., Grabowski, W. W., Malinowski, S. P., and Smolarkiewicz, P. K.: Numerical simulation of cloud-clear air interfacial mixing: homogeneous vs. inhomogeneous mixing, J. Atmos. Sci., 66, 2493-2500, 2009.
    • Baker, M. B. and Latham, J.: The evolution of droplet spectra and the rate of production of embryonic raindrops in small cumulus clouds, J. Atmos. Sci., 36, 1612-1615, 1979.
    • Baker, M. B. and Latham, J.: A diffusive model of the turbulent mixing of dry and cloudy air, Q. J. Roy. Meteor. Soc., 108, 871- 898, 1982.
    • Baker, M. B., Corbin, R. G., and Latham, J.: The influence of entrainment on the evolution of cloud droplet spectra: I. A model of inhomogeneous mixing, Q. J. Roy. Meteor. Soc., 106, 581-598, 1980.
    • Beals, M. J., Fugal, J. P., Shaw, R. A., Lu, J., Spuler, S. M., and Stith, J. L.: Holographic measurements of inhomogeneous cloud mixing at the centimeter scale, Science, 350, 87-90, 2015.
    • Blyth, A. M. and Latham, J.: A Climatological Parameterization for Cumulus Clouds, J. Atmos. Sci., 48, 2367-2371, 1991.
    • Bohren, C. F. and Albrecht, C. H.: Atmospheric Thermodynamics, Oxford University Press, New York, 402 pp., 1998.
    • Bower, K. N. and Choularton, T. W.: The effects of entrainment on the growth of droplets in continental cumulus clouds, Q. J. Roy. Meteor. Soc., 114, 1411-1434, 1988.
    • Broadwell, J. E. and Breidenthal, R. E.: A simple model of mixing and chemical reaction in a turbulent shear layer, J. Fluid Mech., 125, 397-410, 1982.
    • Burnet, F. and Brenguier, J. L.: Observational study of the entrainment-mixing process in warm convective clouds, J. Atmos. Sci., 64, 1995-2011, 2007.
    • Devenish, B. J., Bartello, P., Brenguier, J.-L., Collins, L. R., Grabowski, W. W., Ijzermans, R. H. A., Malinovski, S. P., Reeks, M. W., Vassilicos, J. C., Wang, L.-P., and Warhaft, Z.: Droplet growth in warm turbulent clouds, Q. J. Roy. Meteor. Soc., 138, 1401-1429, 2012.
    • Gerber, H., Frick, G., Jensen, J. B., and Hudson, J. G.: Entrainment, mixing, and microphysics in trade-wind cumulus, J. Meteorol. Soc. Jpn., 86, 87-106, 2008.
    • Hill, T. A. and Choularton, T. W.: An airbone study of the microphysical structure of cumulus clouds, Q. J. Roy. Meteor. Soc., 111, 517-544, 1985.
    • Jarecka, D., Grabowski, W. W., Morrison, H., and Pawlowska, H.: Homogeneity of the Subgrid-Scale Turbulent Mixing in LargeEddy Simulation of Shallow Convection, J. Atmos. Sci., 70, 2751-2767, 2013.
    • Jeffery, C. A.: Inhomogeneous cloud evaporation, invariance, and Damköhler number, J. Geophys. Res., 112, D24S21, doi:10.1029/2007JD008789, 2007.
    • Jensen, J. and Baker, M.: A simple model of droplet spectra evolution during turbulent mixing, J. Atmos. Sci., 46, 2812-2829, 1989.
    • Korolev, A. V.: The influence of supersaturation fluctuations on droplet spectra formation, J. Atmos. Sci., 52, 3620-3634, 1995.
    • Korolev, A. V. and Isaac, G. A.: Drop growth due to high supersaturation caused by isobaric mixing, J. Atmos. Sci., 57, 1675-1685, 2000.
    • Korolev, A. V. and Mazin, I. P.: Supersaturation of water vapor in clouds, J. Atmos. Sci., 60, 2957-2974, 2003.
    • Krueger, S., Su, C.-W., and McMurtry, P.: Modeling entrainment and finescale mixing in cumulus clouds, J. Atmos. Sci., 54, 2697-2712, 1997.
    • Kumar, B., Schumacher, J., and Shaw, R. A.: Cloud microphysical effects of turbulent mixing and entrainment, Theor. Comp. Fluid Dyn., 27, 361-376, 2013.
    • Lasher-Trapp, S. G., Cooper, W. A., and Blyth, A. M.: Broadening of droplet size distributions from entrainment and mixing in a cumulus cloud, Q. J. Roy. Meteor. Soc., 131, 195-220, 2005.
    • Latham, J. and Reed, R. L.: Laboratory studies of the effects of mixing on the evolution of cloud droplet spectra, Q. J. Roy. Meteor. Soc., 103, 297-306, 1977.
    • Lehmann, K., Siebert, H., and Shaw, R. A.: Homogeneous and inhomogeneous mixing in cumulus clouds: dependence on local turbulence structure, J. Atmos. Sci., 66, 3641-3659, 2009.
    • Leon, D. C., French, J. R., Lasher-Trapp, S., Blyth, A. M., Abel, S. J., Ballard, S., Bennett, L. J., Bower, K., Brooks, B., Brown, P., Choularton, T., Clark, P., Collier, C., Crosier, J., Cui, Z., Dufton, D., Eagle, C., Flynn, M. J., Gallagher, M., Hanley, K., Huang, Y., Kitchen, M., Korolev, A., Lean, H., Liu, Z., Marsham, J., Moser, D., Nicol, J., Norton, E. G., Plummer, D. Price, J., Ricketts, H., Roberts, N., Rosenberg, P. D., Taylor, J. W., Williams, P. I., and Young, G.: The Convective Precipitation Experiment (COPE): investigating the origins of heavy precipitation in the southwestern UK, B. Am. Meteorol. Soc., in press, 2016.
    • Lu, C., Liu, Y., and Niu, S.: Examination of turbulent entrainmentimixing mechanisms using a combined approach, J. Geophys. Res., 116, D20207, doi:10.1029/2011JD015944, 2011.
    • Lu, C., Liu, Y., Niu, S., and Endo, S.: Scale dependence of entrainment-mixing mechanisms in cumulus clouds, J. Geophys. Res.-Atmos., 119, 13877-13890, doi:10.1002/2014JD022265, 2014.
    • Paluch, I. R.: Mixing and the droplet size spectrum: generalizations from the CCOPE data, J. Atmos. Sci., 43, 1984-1993, 1986.
    • Paluch, I. R. and Baumgardner, D. G.: Entrainment and fine-scale mixing in a continental convective cloud, J. Atmos. Sci., 46, 261- 278, 1989.
    • Paluch, I. R. and Knight, C. A.: Mixing and evolution of cloud droplet size spectra in a vigorous continental cumulus, J. Atmos. Sci., 41, 1801-1815, 1984.
    • Pinsky, M., Khain, A., Korolev, A., and Magaritz-Ronen, L.: Theoretical investigation of mixing in warm clouds - Part 2: Homogeneous mixing, Atmos. Chem. Phys., 16, 9255-9273, doi:10.5194/acp-16-9255-2016, 2016a.
    • Pinsky, M., Khain, A., and Korolev, A.: Theoretical analysis of mixing in liquid clouds - Part 3: Inhomogeneous mixing, Atmos. Chem. Phys., 16, 9273-9297, doi:10.5194/acp-16-9273- 2016, 2016b.
    • Rogers, R. R.: A Short Course in Cloud Physics, Pergamon press, Oxford, 227 pp., 1976.
    • Squires, P.: The growth of cloud drops by condensation, Aust. J. Sci. Res., 5, 66-86, 1952.
    • Su, C.-W., Krueger, S. K., McMurtry, P. A., and Austin, P. H.: Linear eddy modeling of droplet spectral evolution during entrainment and mixing in cumulus clouds, Atmos. Res., 47-48, 41-58, 1998.
    • Tolle, M. H. and Krueger, S. K.: Effects of entrainment and mixing on droplet size distributions in warm cumulus clouds, J. Adv. Model. Earth Syst., 6, 281-299, doi:10.1002/2012MS000209, 2014.
    • University of Wyoming, Research Flight Center: Flight Level Data from the University of Wyoming King Air during the Convective Precipitation Experiment-Microphysics and Entrainment Dependencies (COPE-MED), Version 1.0, doi:10.15786/M2MW2S, 2016.
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
    47
    47%
  • No similar publications.

Share - Bookmark

Funded by projects

  • NSF | Collaborative Research: The...
  • NSF | Collaborative Research: The...

Cite this article