LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Tracksdorf; Ghorbani; Chandra; Hagen; Bebbington (2005)
Languages: English
Types: Article
Subjects:
Usually common polarimetric weather radar DSP-products (e.g.: reflectivity, differential reflectivity, linear depolarisation ratio - for both - co-polar and cross-polar signal components) are based on the logarithmic receiver output, because of the large dynamic range provided by the logarithmic receiver. In this paper for the first time we also use the linear receiver output to calculate common weather radar DSP-Products. Using the raw time series radar data recorded with the coherent polarimetric C-band weather radar of the DLR ('Poldirad', Wessling, Germany) it is possible to do a comparison between processed weather radar echoes from the linear receiver and the logarithmic receiver. After the comparison showed very good results, we continued the work with the linear receiver data, especially on the topic named temporal decorrelation properties of the linear receiver data. This paper includes the first results obtained from two observables that belong to our working topic. The first observable is the 'Time Decorrelation Factor-TDF' and the second one is the 'Decorrelation Time DTτ'The results have been summarised in the form of empirical relationships, plots and the least mean square (LMS) method of curve fitting was used to give the mathematical relationship for the observables TDF and DTτ. Generally, the paper will also reflect on the statistical properties of radar echoes measured with linear receivers. The usage of the linear receiver data opens a wide field of new applications and products for the work with polarimetric weather radar data, because the linear receiver data also provides phase information which a logarithmic receiver does not.

Share - Bookmark

Cite this article

Collected from