Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Y. Zhang; L. J. Paxton; M. DeMajistre; H. Kil (2006)
Publisher: Copernicus Publications
Journal: Annales Geophysicae
Languages: English
Types: Article
Subjects: Geophysics. Cosmic physics, Q, [ SDU.STU ] Sciences of the Universe [physics]/Earth Sciences, [ SDU.OCEAN ] Sciences of the Universe [physics]/Ocean, Atmosphere, Science, Physics, QC1-999, QC801-809
As a proxy of the Rayleigh-Taylor instability growth rate for equatorial plasma bubbles, we investigate the flux-tube integrated F-region Pedersen conductivity (ΣPF) using the electron density profiles (EDPs) provided by the Global Ultraviolet Imager (GUVI) on board the Thermosphere Ionosphere and Mesosphere Energetics and Dynamics (TIMED) satellite. The investigation is conducted using the EDPs obtained in the Atlantic sector at 19:00-22:00 LT during 4–17 August and 6-16 December 2002. The seasonal difference of the strength and location of the equatorial ionization anomalies (EIAs) induces a significant difference in the deduced ΣPF. Much stronger EIAs are created at higher altitudes and latitudes in December rather than in August. At 19:00–20:00 LT, the peak value of the ΣPF has 23 mhos at 1100 km apex height during 14–16 December and 18mhos at 600 km during 15–17 August. The ΣPF decreases as local time progresses. Therefore, ΣPF provides a preferred condition for the growth of bubbles to higher altitudes at 19:00-20:00 LT than at later hours, in December rather than in August in the Atlantic sector.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Abdu, M. A., Bittencourt, J. A., and Batista, I. S.: Magnetic declination control of the equatorial F-region dynamo electric field development and spread F, J. Geophys. Res., 86, 11 443-11 446, 1981.
    • Abdu, M. A., Batista, I. S., and Sobral, J. H. A.: A new aspect of magnetic declination control of equatorial spread F and F-region dynamo, J. Geophys. Res., 97, 14 897-14 904, 1992.
    • Christensen, A. B., Paxton, L. J., and Avery, S. et al.: Initial Observations with the Global Ultraviolet Imager (GUVI) in the NASA TIMED Satellite Mission, J. Geophys. Res., 108(A12), 1451, doi:10.1029/2003JA009918, 2003.
    • DeMajistre, R., Paxton, L. J., Morrison, D., Yee, J.-H., Goncharenko, L., and Christensen, A.: Retrievals of nighttime electron density from TIMED Global Ultraviolet Imager (GUVI) measurements, J. Geophys. Res., 109, A05305, doi:10.1029/2003JA010296, 2004.
    • Haerendel, G., Eccles, J. V., and Cakir, S.: Theory for modeling the equatorial evening ionosphere and the origin of the shear in the horizontal plasma flow, J. Geophys. Res., 97, 1209-1223, 1992.
    • Kelley, M. C.: The Earth's Ionosphere, Academic Press, San Diego, California, 1989.
    • Kil, H. and Heelis, R. A.: Global distribution of density irregularities in the equatorial ionosphere, J. Geophys. Res., 103, 407-417, 1998.
    • Kil, H., DeMajistre, R., and Paxton, L. J.:F-region plasma distribution seen from TIMED/GUVI and its relation to the equatorial spread F activity, Geophys. Res. Lett., 31, L05810, doi:10.1029/2003GL018703, 2004a.
    • Kil, H., Su, S.-Y., Paxton, L. J., Wolven, B. C., Zhang, Y., Morrison, D., and Yeh, H. C.: Coincident equatorial bubble detection by TIMED/GUVI and ROCSAT-1, Geophys. Res. Lett., 31, L03809, doi:10.1029/2003GL018696, 2004b.
    • Maruyama, T. and Matuura, N.: Longitudinal variability of annual changes in activity of equatorial spread F and plasma bubbles, J. Geophys. Res., 89, 10 903-10 912, 1984.
    • McClure, J. P., Singh, S., Bamgboye, B. K., Johnson, F. S., and Kil, H.: Occurrence of equatorial F region irregularities: Evidence for tropospheric seeding, J. Geophys. Res., 103, 29 119-29 135, 1998.
    • Mendillo, M., Baumgardner, J., Pi, X., and Sultan, P. J.: Onset condition for equatorial spread F, J. Geophys. Res., 97, 13 865- 13 876, 1992.
    • Paxton, L. J., Christensen, A. B., Morrison, D., Wolven, B., Kil, H., Zhang, Y., Ogorzalek, B. S., Humm, D. C., Goldsten, J., DeMajistre, R., and Meng, C. -I.: GUVI: A hyperspectral imager for geospace, Proc. SPIE, 5660, 227-240, doi:10.1117/12/579171, 2004.
    • Ro┬Ęttger, J.: Equatorial spread F by electric fields and atmospheric gravity waves generated by thunderstorms, J. Atmos. Terr. Phys., 43, 453-462, 1981.
    • Sultan, P. J.: Linear theory and modeling of the Rayleigh-Taylor instability leading to the occurrence of equatorial spread F., J. Geophys. Res., 101, 26 875-26 891, 1996.
    • Tsunoda, R. T.: Control of the seasonal and longitudinal occurrence of equatorial scintillations by the longitudinal gradient in integrated E region Pedersen conductivity, J. Geophys. Res., 90, 447-456, 1985.
  • No related research data.
  • No similar publications.