LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Wiechert, A.; Gruber, M.; Karner, K. (2012)
Publisher: Copernicus Publications
Languages: English
Types: Article
Subjects: TA1-2040, T, TA1501-1820, Applied optics. Photonics, Engineering (General). Civil engineering (General), Technology

Classified by OpenAIRE into

ACM Ref: ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION
This paper describes in detail the dense matcher developed since years by Vexcel Imaging in Graz for Microsoft’s Bing Maps project. This dense matcher was exclusively developed for and used by Microsoft for the production of the 3D city models of Virtual Earth. It will now be made available to the public with the UltraMap software release mid-2012. That represents a revolutionary step in digital photogrammetry. The dense matcher generates digital surface models (DSM) and digital terrain models (DTM) automatically out of a set of overlapping UltraCam images. The models have an outstanding point density of several hundred points per square meter and sub-pixel accuracy and are generated automatically. The dense matcher consists of two steps. The first step rectifies overlapping image areas to speed up the dense image matching process. This rectification step ensures a very efficient processing and detects occluded areas by applying a back-matching step. In this dense image matching process a cost function consisting of a matching score as well as a smoothness term is minimized. In the second step the resulting range image patches are fused into a DSM by optimizing a global cost function. The whole process is optimized for multi-core CPUs and optionally uses GPUs if available. UltraMap 3.0 features also an additional step which is presented in this paper, a complete automated true-ortho and ortho workflow. For this, the UltraCam images are combined with the DSM or DTM in an automated rectification step and that results in high quality true-ortho or ortho images as a result of a highly automated workflow. The paper presents the new workflow and first results.