LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Weatherhead, Elizabeth C.; Harder, Jerald; Araujo-Pradere, Eduardo A.; English, Jason M.; Flynn, Lawrence E.; Frith, Stacey; Lazo, Jeffrey K.; Pilewskie, Peter; Weber, Mark; Woods, Thomas N. (2017)
Languages: English
Types: Article
Subjects:
Sensors on satellites provide unprecedented understanding of the Earth’s climate system by measuring incoming solar radiation, as well as both passive and active observations of the entire Earth with outstanding spatial and temporal coverage that would be currently impossible without satellite technology. A common challenge with satellite observations is to quantify their ability to provide well-calibrated, long-term, stable records of the parameters they measure. Ground-based intercomparisons offer some insight, while reference observations and internal calibrations give further assistance for understanding long-term stability. A valuable tool for evaluating and developing long-term records from satellites is the examination of data from overlapping satellites. Prior papers have used overlap periods to identify the offset between data from two satellites and estimate the added uncertainty to long-term records. This paper addresses the length of overlap needed to identify an offset or a drift in the offsets of data between two sensors. The results are presented for the general case of sensor overlap by using the case of overlap of the SORCE SIM and SOLSTICE solar irradiance data as an example. To achieve a 1 % uncertainty in estimating the offset for these two instruments’ measurement of the Mg II core (280 nm) requires approximately 5 months of overlap. For relative drift to be identified within 0.1 % yr−1 uncertainty, the overlap for these two satellites would need to be 2.6 years. Additional overlap of satellite measurements is needed if, as is the case for solar monitoring, unexpected jumps may occur because these jumps add to the uncertainty of both offsets and drifts; the additional length of time needed to account for a single jump in the overlap data may be as large as 50 % of the original overlap period in order to achieve the same desired confidence in the stability of the merged dataset. Extension of the results presented here are directly applicable to satellite Earth observations. Approaches for Earth observations may be challenged by the complexity of those observations but may also benefit from ancillary observations taken from ground-based and in situ sources. Difficult choices need to be made when monitoring approaches are considered; we outline some attempts at optimizing networks based on economic principles. The careful evaluation of monitoring overlap is important to the appropriate application of observational resources and to the usefulness of current and future observations.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from