Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Geddes, Jeffrey A.; Martin, Randall V. (2017)
Languages: English
Types: Article
Reactive nitrogen oxides (NOy) are a major constituent of the nitrogen deposited from the atmosphere, but observational constraints on their deposition are limited by poor or nonexistent measurement coverage in many parts of the world. Here we apply NO2 observations from multiple satellite instruments (GOME, SCIAMACHY, and GOME-2) to constrain the global deposition of NOy over the last two decades. We accomplish this by producing top-down estimates of NOx emissions from inverse modeling of satellite NO2 columns over 1996–2014, and including these emissions in the GEOS-Chem chemical transport model to simulate chemistry, transport, and deposition of NOy. Our estimates of long-term mean wet nitrate (NO3) deposition are highly consistent with available measurements in North America, Europe, and East Asia combined (r = 0.83, normalized mean bias = −7 %, N = 136). Likewise, our calculated trends in wet NO3 deposition are largely consistent with the measurements, with 129 of the 136 gridded model-data pairs sharing overlapping 95 % confidence intervals. We find that global mean NOy deposition over 1996–2014 is 56.0 Tg N yr−1, with a minimum in 2006 of 50.5 Tg N and a maximum in 2012 of 60.8 Tg N. Regional trends are large, with opposing signs in different parts of the world. Over 1996 to 2014, NOy deposition decreased by up to 60 % in eastern North America, doubled in regions of East Asia, and declined by 20 % in parts of Western Europe. About 40 % of the global NOy deposition occurs over oceans, with deposition to the North Atlantic Ocean declining and deposition to the northwestern Pacific Ocean increasing. Using the residual between NOx emissions and NOy deposition over specific land regions, we investigate how NOx export via atmospheric transport has changed over the last two decades. Net export from the continental United States decreased substantially, from 2.9 Tg N yr−1 in 1996 to 1.5 Tg N yr−1 in 2014. On the other hand, export from China more than tripled between 1996 and 2011 (from 1.0 Tg N yr−1 to 3.5 Tg N yr−1), before a striking decline to 2.5 Tg N yr−1 by 2014. We find that declines in NOx export from some Western European countries have counteracted increases in emissions from neighbouring countries to the east. A sensitivity study indicates that simulated NOy deposition is robust to uncertainties in NH3 emissions with a few exceptions. Our novel long-term study provides timely context on the rapid redistribution of atmospheric nitrogen transport and subsequent deposition to ecosystems around the world.

Share - Bookmark

Cite this article

Collected from