Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Kharol, S. K.; Badarinath, K. V. S.; Kaskaoutis, D. G.; Sharma, A. R.; Gharai, B. (2011)
Publisher: Copernicus Publications
Languages: English
Types: Article
Subjects: Geophysics. Cosmic physics, Q, Science, Physics, QC1-999, QC801-809
The transport of aerosols and pollutants from continental India to the adjoining oceanic areas is a major topic of concern and several experimental campaigns have been conducted over the region focusing on aerosol characteristics and their climate implications. The present study analyzes the spectral aerosol optical depth (AOD) variations over Bay of Bengal (BoB) during Winter-Integrated Campaign for Aerosols, gases and Radiation Budget (W-ICARB) from 27 December 2008 to 30 January 2009 and investigates the influence of the adjoining landmass to the marine aerosol field. High AOD500 values (>0.7) occurred over northern BoB due to outflow of aerosols and pollutants from the densely populated Indo-Gangetic Plains (IGP); low AOD500 (0.1–0.2) was observed in central and southern BoB, far away from the mainland. The Angstrom exponent "α" was observed to be high (>1.2) near coastal waters, indicating relative abundance of accumulation-mode continental aerosols. On the other hand, over southern BoB its values dropped below ~0.7. National Center for Environmental Prediction (NCEP) reanalysis data on winds at 850 and 700 hPa, along with air-mass trajectories calculated using Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model, suggested transport of continental aerosols from central and northern India over the BoB. On the other hand, when the ship was crossing the eastern BoB, the aerosol loading was strongly affected by air-masses originating from Southeast Asia, causing an increase in AOD and α. Biomass-burning episodes over the region played an important role in the observed aerosol properties. Terra/Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) AOD550 and cruise measured AOD550 showed good agreement (R2 = 0.86 and 0.77, respectively) over BoB, exhibiting similar AOD and α spatio-temporal variation.

Share - Bookmark

Cite this article