LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Lee, Sang H.; Kim, Bo Kyung; Lim, Yu Jeong; Joo, HuiTae; Lee, Dabin; Park, Jisoo; Lee, Sang Hoon (2016)
Languages: English
Types: Article
Subjects:
Small-sized phytoplankton is anticipated to be more important for phytoplankton community in a recent changing ocean condition. However, little information on the contribution of small-sized phytoplankton to overall phytoplankton production is currently available in the Amundsen Sea. To determine the contributions of small-sized phytoplankton to total biomass and primary production, carbon and nitrogen uptake rates of total and small-sized phytoplankton were obtained from 12 productivity stations in the Amundsen Sea. The daily carbon uptake rates of total phytoplankton averaged in this study were 0.42 g C m−2 d−1 (S.D. = ±0.30 g C m−2 d−1) and 0.84 g C m−2 d−1 (S.D. = ±0.18 g C m−2 d−1) whereas the daily total nitrogen (nitrate and ammonium) uptake rates were 0.12 g N m−2 d−1 (S.D. = ±0.09 g N m−2 d−1) and 0.21 g N m−2 d−1 (S.D. = ±0.11 g N m−2 d−1), respectively for non-polynya and polynya regions, which were within the ranges reported previously. Small phytoplankton contributed 26.9 % and 27.7 % to the total carbon and nitrogen uptake rates of phytoplankton in this study, respectively, which were relatively higher than the chlorophyll-a contribution (19.4 %) of small phytoplankton. For a comparison of different regions, the contributions for chlorophyll-a concentration and primary production of small phytoplankton averaged from all the non-polynya stations were 42.4 % and 50.8 %, which were significantly higher than those (7.9 % and 14.9 %, respectively) in polynya region. A strong negative correlation (r2 = 0.790, p < 0.05) was found between the contributions of small phytoplankton and the total daily primary production of phytoplankton in this study. This finding implies that daily primary production decreases as small phytoplankton contribution increases, which is mainly due to the lower carbon uptake rate of small phytoplankton than large phytoplankton. Under ongoing environmental changes caused by global warming, a potential decrease of total primary production would be led by increasing contribution of small phytoplankton in the Amundsen Sea.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Download from

Cite this article

Collected from