LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Backman, John; Wood, Curtis; Auvinen, Mikko; Kangas, Leena; Hannuniemi, Hanna; Karppien, Ari; Kukkonen, Jaakko (2017)
Publisher: Copernicus Publications
Languages: English
Types: Article
Subjects: AREA, URBAN AIR-POLLUTION, ATMOSPHERIC RADIATIVE-TRANSFER, HELSINKI, 114 Physical sciences, QE1-996.5, MODELING SYSTEM, Geology

Classified by OpenAIRE into

arxiv: Physics::Atmospheric and Oceanic Physics
The meteorological input parameters for urban and local scale dispersion models can be evaluated by pre-processing meteorological observations, using a boundary-layer parametrization model. This study presents a sensitivity analysis of a meteorological pre-processor model (MPP-FMI) that utilises readily available meteorological data as input. The sensitivity of the pre-processor to meteorological input was analysed using algorithmic differentiation (AD). The AD tool used was TAPENADE. The AD method numerically evaluates the partial derivatives of functions that are implemented in a computer program. In this study, we focus on the evaluation of vertical fluxes in the atmosphere, and in particular on the sensitivity of the predicted inverse Obukhov length and friction velocity on the model input parameters. The study shows that the estimated inverse Obukhov length and friction velocity are most sensitive to wind speed, and second most sensitive to solar irradiation. The dependency on wind speed is most pronounced at low wind speeds. The presented results have implications for improving the meteorological pre-processing models. AD is shown to be an efficient tool for studying the ranges of sensitivities of the predicted parameters on the model input values quantitatively. A wider use of such advanced sensitivity analysis methods could potentially be very useful in analysing and improving the models used in atmospheric sciences.
  • No references.
  • No related research data.
  • No similar publications.