Remember Me
Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:

OpenAIRE is about to release its new face with lots of new content and services.
During September, you may notice downtime in services, while some functionalities (e.g. user registration, login, validation, claiming) will be temporarily disabled.
We apologize for the inconvenience, please stay tuned!
For further information please contact helpdesk[at]openaire.eu

fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Masters, T. (2013)
Languages: English
Types: 0038
The effectiveness of multiple linear regression approaches in removing solar, volcanic, and El Nino Southern Oscillation (ENSO) influences from the recent (1979–2012) surface temperature record is examined, using simple energy balance and global climate models (GCMs). These multiple regression methods are found to incorrectly diagnose the underlying signal – particularly in the presence of a deceleration – by generally overestimating the solar cooling contribution to an early 21st century pause while underestimating the warming contribution from the Mt. Pinatubo recovery. In fact, one-box models and GCMs suggest that the Pinatubo recovery has contributed more to post-2000 warming trends than the solar minimum has contributed to cooling over the same period. After adjusting the observed surface temperature record based on the natural-only multi-model mean from several CMIP5 GCMs and an empirical ENSO adjustment, a significant deceleration in the surface temperature increase is found, ranging in magnitude from −0.06 to −0.12 K dec−2 depending on model sensitivity and the temperature index used. This likely points to internal decadal variability beyond these solar, volcanic, and ENSO influences.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok