LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
A. R. Koss; C. Warneke; B. Yuan; M. M. Coggon; P. R. Veres; J. A. de Gouw (2016)
Publisher: Copernicus Publications
Journal: Atmospheric Measurement Techniques
Languages: English
Types: Article
Subjects: TA170-171, Earthwork. Foundations, Environmental engineering, TA715-787

Classified by OpenAIRE into

ACM Ref: TheoryofComputation_ANALYSISOFALGORITHMSANDPROBLEMCOMPLEXITY
NO+ chemical ionization mass spectrometry (NO+ CIMS) can achieve fast (1 Hz and faster) online measurement of trace atmospheric volatile organic compounds (VOCs) that cannot be ionized with H3O+ ions (e.g., in a PTR-MS or H3O+ CIMS instrument). Here we describe the adaptation of a high-resolution time-of-flight H3O+ CIMS instrument to use NO+ primary ion chemistry. We evaluate the NO+ technique with respect to compound specificity, sensitivity, and VOC species measured compared to H3O+. The evaluation is established by a series of experiments including laboratory investigation using a gas-chromatography (GC) interface, in situ measurement of urban air using a GC interface, and direct in situ measurement of urban air. The main findings are that (1) NO+ is useful for isomerically resolved measurements of carbonyl species; (2) NO+ can achieve sensitive detection of small (C4–C8) branched alkanes but is not unambiguous for most; and (3) compound-specific measurement of some alkanes, especially isopentane, methylpentane, and high-mass (C12–C15) n-alkanes, is possible with NO+. We also demonstrate fast in situ chemically specific measurements of C12 to C15 alkanes in ambient air.

Share - Bookmark

Cite this article