Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
E. Collier; T. Mölg; F. Maussion; D. Scherer; C. Mayer; A. B. G. Bush (2013)
Publisher: Copernicus Publications
Journal: The Cryosphere
Languages: English
Types: Article
Subjects: GE1-350, QE1-996.5, Environmental sciences, Geology
The traditional approach to simulations of alpine glacier mass balance (MB) has been one-way, or offline, thus precluding feedbacks from changing glacier surface conditions on the atmospheric forcing. In addition, alpine glaciers have been only simply, if at all, represented in atmospheric models to date. Here, we extend a recently presented, novel technique for simulating glacier–atmosphere interactions without the need for statistical downscaling, through the use of a coupled high-resolution mesoscale atmospheric and physically-based climatic mass balance (CMB) modelling system that includes glacier CMB feedbacks to the atmosphere. We compare the model results over the Karakoram region of the northwestern Himalaya with remote sensing data for the ablation season of 2004 as well as with in situ glaciological and meteorological measurements from the Baltoro glacier. We find that interactive coupling has a localized but appreciable impact on the near-surface meteorological forcing data and that incorporation of CMB processes improves the simulation of variables such as land surface temperature and snow albedo. Furthermore, including feedbacks from the glacier model has a non-negligible effect on simulated CMB, reducing modelled ablation, on average, by 0.1 m w.e. (−6.0%) to a total of −1.5 m w.e. between 25 June–31 August 2004. The interactively coupled model shows promise as a new, multi-scale tool for explicitly resolving atmospheric-CMB processes of mountain glaciers at the basin scale.

Share - Bookmark

Cite this article