LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Fogel, M. L.; Wooller, M. J.; Cheeseman, J.; Smallwood, B. J.; Roberts, Q.; Romero, I.; Meyers, M. J. (2008)
Languages: English
Types: Article
Subjects:
Extremes in δ15N values in mangrove tissues and lichens (range =+4 to −22‰) were measured from a mangrove forest ecosystem located on Twin Cays, offshore islands in Belize, Central America. The N isotopic compositions and concentrations of NH4+/NH3 in porewater, rainwater, and atmospheric ammonia, and the δ15N of lichens, mangrove leaves, roots, stems, and wood were examined to study the biogeochemical processes important for establishing these unusual N isotopic ratios. Dwarfed Rhizophora mangle trees had the most negative δ15N, whereas fringing Rhizophora trees, the most positive δ15N values. Porewater ammonium concentrations had little relationship to N isotopic fractionation in mangrove tissues. In dwarfed mangroves, the δ15N of fine and coarse roots were 6–9‰ more positive than leaf tissue from the same tree, indicating different sources of N for root and leaf tissues. When P was added to dwarfed mangrove trees without added N, δ15N increased within one year from −12‰ to −2‰, approaching the δ15N of porewater ammonium (δ15N=+4‰). Isotopically depleted ammonia in the atmosphere (δ15N=−19‰) and in rainwater (δ15N=−10‰) were found on Twin Cays. We propose that foliar uptake of these atmospheric sources by P-stressed, dwarfed mangrove trees and lichens can explain their very negative δ15N values. In environments where P is limiting for growth, uptake of atmospheric N by Rhizophora mangle may be an important adaptive strategy.

Share - Bookmark

Download from

Cite this article

Collected from