LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Casson, F. J. (Francis James)
Languages: English
Types: Doctoral thesis
Subjects: QC

Classified by OpenAIRE into

arxiv: Physics::Fluid Dynamics, Physics::Plasma Physics
Small scale turbulence in a magnetically confined fusion plasma drives energy\ud and particle transport which determine the confinement. The plasma in a tokamak\ud experiment has a toroidal rotation which may be driven externally, but can also\ud arise spontaneously from turbulent momentum transport. This thesis investigates\ud the interaction between turbulence and rotation via nonlinear numerical simulations,\ud which use the gyrokinetic description in the frame that corotates with the plasma.\ud A local gyrokinetic code is extended to include both the centrifugal force, and the\ud stabilising effect of sheared equilibrium flow.\ud Sheared flow perpendicular to the magnetic field suppresses the turbulence,\ud and also breaks a symmetry of the local model. The resulting asymmetry creates\ud a turbulent residual stress which can counteract diffusive momentum transport and\ud contribute to spontaneous rotation. The competition between symmetry breaking\ud and turbulence suppression results in a maximum in the nondiffusive momentum flux\ud at intermediate shearing rates. Whilst this component of the momentum transport\ud is driven by the sheared flow, it is also found to be suppressed by the shearing more\ud strongly than the thermal transport. The direction of the residual stress reverses\ud for negative magnetic shear, but also persists at zero magnetic shear.\ud The parallel component of the centrifugal force traps particles on the outboard\ud side of the plasma, which destabilises trapped particle driven modes. The\ud perpendicular component of the centrifugal force appears as a centrifugal drift which\ud modifies the phase relation between density and electric field perturbations, and is\ud stabilising for both electron and ion driven instabilities. For ion temperature gradient\ud dominated turbulence, an increased fraction of slow trapped electrons enhances\ud the convective particle pinch, suggesting increased density peaking for strongly rotating\ud plasmas. Heavy impurities feel the centrifugal force more strongly, therefore\ud the effects of rotation are significant for impurities even when the bulk ion Mach\ud number is low. For ion driven modes, rotation results in a strong impurity convection\ud inward, whilst a more moderate convection outward is found for electron driven\ud modes.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. F. J. Casson, A. G. Peeters, C. Angioni, Y. Camenen, W. A. Hornsby, A. P. Snodin, and G. Szepesi. Gyrokinetic simulations including the centrifugal force in a rotating tokamak plasma. Phys. Plasmas, 17, 102305, (2010).
    • 2. A. G. Peeters, Y. Camenen, F. J. Casson, W. A. Hornsby, A. P. Snodin, D. Strintzi, and G. Szepesi. The nonlinear gyro-kinetic flux tube code GKW. Comp. Phys. Commun. 180, 2650, (2009).
    • 3. F. J. Casson, A. G. Peeters, Y. Camenen, W. A. Hornsby, A. P. Snodin, D. Strintzi, and G. Szepesi. Anomalous parallel momentum transport due to E xB flow shear in a tokamak plasma. Phys. Plasmas 16, 092303, (2009).
    • 4. A. G. Peeters, D. Strintzi, Y. Camenen, C. Angioni, F. J. Casson, W. A. Hornsby, and A. P. Snodin. Influence of the centrifugal force and parallel dynamics on the toroidal momentum transport due to small scale turbulence in a tokamak. Phys. Plasmas, 16, 042310, (2009).
    • 1. A. G. Peeters, C. Angioni, Y. Camenen, F. J. Casson, W. A. Hornsby, A. P. Snodin, and D. Strintzi. The influence of the self-consistent mode structure on the Coriolis pinch effect. Phys. Plasmas, 16, 062311, (2009).
    • 2. C. M. Roach, I. G. Abel, R. J. Akers, W. Arter, M. Barnes, Y. Camenen, F. J. Casson, G. Colyer, J. W. Connor, S. C. Cowley, D. Dickinson, W. Dorland, A. R. Field, W. Guttenfelder, R. J. Hastie, E. Highcock, N. F. Loureiro, A. G. Peeters, M. Reshko, S. Saarelma, A. Schekochihin, M. Valovic, and H. R. Wilson. Gyrokinetic simulations of Spherical Tokamaks. Plasma Phys. Control. Fusion 51, 124020, (2009).
    • 3. Y. Camenen, A. G. Peeters, C. Angioni, F. J. Casson, W. A. Hornsby, A. P. Snodin, and D. Strintzi. Transport of Parallel Momentum Induced by Current-Symmetry Breaking in Toroidal Plasmas. Phys. Rev. Lett., 102, 125001, (2009).
    • 4. Y. Camenen, A. G. Peeters, C. Angioni, F. J. Casson, W. A. Hornsby, A. P. Snodin, and D. Strintzi. Intrinsic rotation driven by the electrostatic turbulence in up-down asymmetric toroidal plasmas. Phys. Plasmas, 16, 062501, (2009).
    • 5. Y. Camenen, A. G. Peeters, C. Angioni, F. J. Casson, W. A. Hornsby, A. P. Snodin, and D. Strintzi. Impact of the background toroidal rotation on particle and heat turbulent transport in tokamak plasmas. Phys. Plasmas, 16, 012503, (2009).
    • 6. Y. Camenen, A. Bortolon, B.P. Duval, L. Federspiel, A.G. Peeters, F. J. Casson, W.A. Hornsby, A.N. Karpushov, F. Piras, O. Sauter, A. P. Snodin, G. Szepesi and the TCV Team, Experimental demonstration of an up-down asymmetry effect on intrinsic rotation in the TCV tokamak. Plasma Phys. Control. Fusion, 52 124037, (2010).
    • 7. Y. Camenen, A. Bortolon, B. P. Duval, L. Federspiel, A. G. Peeters, F. J. Casson, W. A. Hornsby, A. N. Karpushov, F. Piras, O. Sauter, A. P. Snodin, and G. Szepesi. Experimental evidence of momentum transport induced by an up-down asymmetric magnetic equilibrium in toroidal plasmas. Phys. Rev. Lett., 105, 135003, (2010).
    • 8. W. A. Hornsby, A. G. Peeters, A. P.Snodin, F. J. Casson, Y. Camenen, G. Szepesi, M. Siccinio, and E. Poli. The nonlinear coupling between gyroradius scale turbulence and mesoscale magnetic islands in fusion plasmas. Phys. Plasmas, 17, 092301, (2010).
    • 9. W. A. Hornsby, A. G. Peeters, E. Poli, M. Siccinio, A. P. Snodin, F. J. Casson, Y. Camenen, and G. Szepesi. On the nonlinear coupling between micro turbulence and mesoscale magnetic islands in a plasma. Europhysics Lett, 91, 45001, (2010).
    • 10. W. A. Hornsby, M. Siccinio, A. G. Peeters, E. Poli, A. P. Snodin, F. J. Casson, Y. Camenen, G. Szepesi, Interaction of turbulence with magnetic islands: Effect on bootstrap current. Plasma Phys. Control. Fusion, 53, 054008, (2011).
    • 11. A. G. Peeters, C. Angioni, A. Bortolon, Y. Camenen, F. J. Casson, B. Duval, L. Fiederspiel, W. A. Hornsby, Y. Idomura, N. Kluy, P. Mantica, F. I. Parra, A.P. Snodin, G. Szepesi, D. Strintzi, T. Tala, G. Tardini, P. de Vries, J. Weiland Overview of anomalous toroidal momentum transport. Nuc. Fusion, submitted, (2011).
    • [1] D. Meade, Nucl. Fusion 50, 014004 (2010).
    • [2] EFDA-JET , http://www.jet.efda.org/.
    • [3] V. D. Pustovitov, Plasma Physics Reports 29, 105 (2003).
    • [4] F. L. Hinton and S. K. Wong, Phys. Fluids 28, 3082 (1985).
    • [5] J. Wesson, Nucl. Fusion 37, 577 (1997).
    • [6] W. Horton, Rev. Mod. Phys. 71, 735 (1999).
    • [7] W. Dorland, PhD in physics, Princeton University (1993).
    • [8] J. Weiland, Collective Modes in Inhomogeneous Plasma (IOP, 2000), 1st ed.
    • [9] A. A. Vlasov, Soviet Physics Uspekhi 10, 721 (1968).
    • [10] L. Landau, J. Phys. USSR 10 (1946), English translation in JETP 16, 574.
    • [11] E. A. Frieman and L. Chen, Phys. Fluids 25, 502 (1982).
    • [12] J. Weiland, A. Jarmn, and H. Nordman, Nucl. Fusion 29, 1810 (1989).
    • [13] P. K. Shukla and J. Weiland, Phys. Rev. A 40, 341 (1989).
    • [14] J. Weiland and A. Hirose, Nucl. Fusion 32, 151 (1992).
    • [15] W. Dorland and G. W. Hammett, Phys. Fluids B-Plasma 5, 812 (1993).
    • [16] G. W. Hammett, M. A. Beer, W. Dorland, et al., Plasma Phys. Contr. F. 35, 973 (1993).
    • [17] M. A. Beer, PhD in physics, Princeton University (1995).
    • [18] M. A. Beer and G. W. Hammett, Phys. Plasmas 3, 4018 (1996).
    • [19] D. Strintzi and B. Scott, Phys. Plasmas 11, 5452 (2004).
    • [20] B. D. Scott, Phys. Plasmas 12, 102307 (2005).
    • [21] M. Kotschenreuther, W. Dorland, M. A. Beer, et al., Phys. Plasmas 2, 2381 (1995).
    • [22] R. E. Waltz, G. M. Staebler, W. Dorland, et al., Phys. Plasmas 4, 2482 (1997).
    • [23] G. Bateman, A. H. Kritz, J. E. Kinsey, et al., Phys. Plasmas 5, 1793 (1998).
    • [53] P. J. Catto, W. M. Tang, and D. E. Baldwin, Plasma Physics 23, 639 (1981).
    • [54] A. J. Brizard and T. S. Hahm, Reviews of Modern Physics 79, 421 (2007).
    • [55] A. J. Brizard, Phys. Plasmas 2, 459 (1995).
    • [56] F. J. Casson, A. G. Peeters, Y. Camenen, et al., Phys. Plasmas 16, 092303 (2009).
    • [57] A. G. Peeters, D. Strintzi, Y. Camenen, et al., Phys. Plasmas 16, 042310 (2009).
    • [58] A. G. Peeters, Y. Camenen, F. J. Casson, et al., Comp. Phys. Commun. 180, 2650 (2009).
    • [59] A. G. Peeters, Y. Camenen, F. J. Casson, et al., GKW How and Why, http://www.gkw.org.uk/tikiwiki/Manual, GKW manual, expanded from Comp. Phys. Comm, 180, 2650.
    • [60] F. L. Hinton and R. D. Hazeltine, Reviews of Modern Physics 48, 239 (1976).
    • [61] E. Mazzucato, S. H. Batha, M. Beer, et al., Phys. Rev. Lett. 77, 3145 (1996).
    • [62] G. McKee, R. Ashley, R. Durst, et al., Rev. Sci. Instr. 70, 913 (1999).
    • [63] G. R. McKee, M. Murakami, J. A. Boedo, et al., Phys. Plasmas 7, 1870 (2000).
    • [64] R. Nazikian, K. Shinohara, G. J. Kramer, et al., Phys. Rev. Lett. 94, 135002 (2005).
    • [65] G. McKee, C. Petty, R. Waltz, et al., Nucl. Fusion 41, 1235 (2001).
    • [66] P. Hennequin, Comptes Rendus Physique 7, 670 (2006).
    • [67] S. Hirshman and D. Sigmar, Nucl. Fusion 21, 1079 (1981).
    • [68] T. S. Hahm, Phys. Plasmas 3, 4658 (1996).
    • [69] R. G. Littlejohn, Phys. Fluids 24, 1730 (1981).
    • [70] R. G. Littlejohn, J. Plasma. Phys. 29, 111 (1983).
    • [71] H. Sugama, Phys. Plasmas 7, 466 (2000).
    • [72] B. Scott and J. Smirnov, Phys. Plasmas 17, 112302 (2010).
    • [73] J. B. Taylor, Phys. Fluids 7, 767 (1964).
    • [74] T. Vernay, S. Brunner, L. Villard, et al., J. Phys. Conf. Series 260, 012021 (2010).
    • [75] T. Vernay, S. Brunner, L. Villard, et al., Phys. Plasmas 17, 122301 (2010).
    • [76] R. E. Waltz, G. D. Kerbel, J. Milovich, et al., Phys. Plasmas 2, 2408 (1995).
    • [77] A. G. Peeters, C. Angioni, M. Apostoliceanu, et al., Phys. Plasmas 12, 022505 (2005).
    • [78] R. E. Waltz and R. L. Miller, Phys. Plasmas 6, 4265 (1999).
    • [79] E. J. Synakowski, S. H. Batha, M. A. Beer, et al., Phys. Plasmas 4, 1736 (1997).
    • [80] C. Bourdelle, W. Dorland, X. Garbet, et al., Phys. Plasmas 10, 2881 (2003).
    • [109] T. Tatsuno, W. Dorland, A. A. Schekochihin, et al., Phys. Rev. Lett. 103, 015003 (2009).
    • [110] M. Frigo and S. Johnson, Proc. IEEE 93, 216 (2005).
    • [111] W. Dorland, F. Jenko, M. Kotschenreuther, et al., Phys. Rev. Lett. 85, 5579 (2000).
    • [112] J. Candy and R. Waltz, Journal of Computational Physics 186, 545 (2003).
    • [113] P. G. Drazin and W. H. Reid, Hydrodynamic stability (Cambridge University Press, 2004).
    • [114] R. E. Waltz, R. L. Dewar, and X. Garbet, Physics of Plamas 5, 1784 (1998).
    • [115] P. J. Catto, Phys. Fluids 16, 1719 (1973).
    • [116] J. Rice, A. Ince-Cushman, J. deGrassie, et al., Nucl. Fusion 47, 1618 (2007).
    • [117] A. Peeters, C. Angioni, A. Bortolon, et al., Nucl. Fusion 51 (2011), Overview of toriodal momentum transport (submitted).
    • [118] R. L. Miller and R. E. Waltz, Phys. Plasmas 1, 2835 (1994).
    • [119] F. Baron, PhD in physics, Univ. Pierre et Marie Curie, Paris, France (1982).
    • [120] U. Schumann, in Lecture Notes in Physics, Berlin Springer Verlag (1985), vol. 218, 492-496.
    • [121] T. Gerz, U. Schumann, and S. E. Elghobashi, Journal of Fluid Mechanics Digital Archive 200, 563 (1989).
    • [122] T. G¨orler, PhD in physics, Universit¨at Ulm (2009).
    • [123] R. S. Rogallo, NASA STI/Recon Technical Report N 81, 31508 (1981).
    • [124] T. A. Zang, Applied Numerical Mathematics 7, 27 (1991).
    • [125] A. Pumir, Phys. Fluids 8, 3112 (1996).
    • [126] J. Schumacher and B. Eckhardt, EPL (Europhysics Letters) 52, 627 (2000).
    • [127] K. A. Brucker, J. C. Isaza, T. Vaithianathan, et al., J. Comp. Phys. 225, 20 (2007).
    • [128] G. W. Hammett, W. Dorland, N. F. Loureiro, et al., in 48th Annual Meeting of the Division of Plasma Physics, Philadelphia, (APS) (2006), VP1.136.
    • [129] T. S. Hahm and K. H. Burrell, Phys. Plasmas 2, 1648 (1995).
    • [130] K. H. Burrell, Phys. Plasmas 4, 1499 (1997).
    • [131] W. M. Nevins, A. M. Dimits, B. I. Cohen, et al., in Proceedings of the Eighteenth IAEA Fusion Energy Conference, Sorrento (2000), THP1/03.
    • [132] R. E. Waltz, J. M. Candy, and M. N. Rosenbluth, Phys. Plasmas 9, 1938 (2002).
    • [133] J. E. Kinsey, R. E. Waltz, and J. Candy, Phys. Plasmas 12, 062302 (2005).
    • [162] J. Weiland, R. Singh, H. Nordman, et al., Nucl. Fusion 49, 065033 (2009).
    • [163] Y. Camenen, A. G. Peeters, C. Angioni, et al., Phys. Plasmas 16, 062501 (2009).
    • [164] T. S. Hahm, P. H. Diamond, O. D. Gu¨rcan, et al., Phys. Plasmas 15, 055902 (2008).
    • [165] A. G. Peeters, C. Angioni, and D. Strintzi, Phys. Plasmas 16, 034703 (2009).
    • [166] I. Holod and Z. Lin, Phys. Plasmas 15, 092302 (2008).
    • [167] W. X. Wang, T. S. Hahm, S. Ethier, et al., Phys. Rev. Lett. 102, 035005 (2009).
    • [168] F. I. Parra and P. J. Catto, Phys. Plasmas 17, 056106 (2010).
    • [169] F. I. Parra, M. Barnes, and P. J. Catto, preprint arXiv:1102.4613 (2011), (submitted to Nuc. Fusion).
    • [170] F. I. Parra, M. Barnes, and A. G. Peeters, preprint arXiv:1102.3717 (2011), (submitted to Nuc. Fusion).
    • [171] N. Mattor and P. H. Diamond, Phys. Fluids 31, 1180 (1988).
    • [172] N. Kluy, C. Angioni, Y. Camenen, et al., Phys. Plasmas 16, 122302 (2009).
    • [173] M. A. Mahmood, A. Eriksson, and J. Weiland, Phys. Plasmas 17, 122310 (2010).
    • [174] Y. Camenen, A. Bortolon, B. P. Duval, et al., Phys. Rev. Lett. 105, 135003 (2010).
    • [175] Y. Camenen, A. Bortolon, B. P. Duval, et al., Plasma Phys. Contr. F. 52, 124037 (2010).
    • [176] C. J. McDevitt, P. H. Diamond, O. D. Gu¨rcan, et al., Phys. Plasmas 16, 052302 (2009).
    • [177] C. J. McDevitt, P. H. Diamond, O. D. Gu¨rcan, et al., Phys. Rev. Lett. 103, 205003 (2009).
    • [178] O. D. Gu¨rcan, P. H. Diamond, P. Hennequin, et al., Phys. Plasmas 17, 112309 (2010).
    • [179] Y. Camenen, Y. idomura, S. Jolliet, et al., Nucl. Fusion 51 (2011), Momentum transport by ion-scale turbulence in global and local gyrokinetic simulations (submitted).
    • [180] F. I. Parra and P. J. Catto, Plasma Phys. Contr. F. 52, 045004 (2010).
    • [181] F. L. Waelbroeck and L. Chen, Phys. Fluids B-Plasma 3, 601 (1991).
    • [182] J. B. Taylor and H. R. Wilson, Plasma Phys. Contr. F. 38, 1999 (1996).
    • [183] J. W. Connor and T. J. Martin, Plasma Phys. Contr. F. 49, 1497 (2007).
    • [184] R. E. Waltz, G. M. Staebler, J. Candy, et al., Phys. Plasmas 16, 079902 (2009).
    • [185] M. Barnes, F. I. Parra, E. G. Highcock, et al., Phys. Rev. Lett. 106, 175004 (2011).
    • [186] P. de Vries, M. Hua, D. McDonald, et al., Nucl. Fusion 48, 065006 (2008).
    • [187] R. J. Akers, J. W. Ahn, G. Y. Antar, et al., Plasma Phys. Contr. F. 45, A175 (2003).
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article