LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Yanes, R.; Chubykalo-Fesenko, O.; Kachkachi, H.; Garanin, D. A.; Evans, R.; Chantrell, R. W.; Evans, Richard Francis Llewelyn (2007)
Languages: English
Types: Article
Subjects: 3104
Magnetic nanoparticles with Néel surface anisotropy, different internal structures, surface arrangements, and elongation are modeled as many-spin systems. The results suggest that the energy of many-spin nanoparticles cut from cubic lattices can be represented by an effective one-spin potential containing uniaxial and cubic anisotropies. It is shown that the values and signs of the corresponding constants depend strongly on the particle's surface arrangement, internal structure, and shape. Particles cut from a simple cubic lattice have the opposite sign of the effective cubic term, as compared to particles cut from the face-centered cubic lattice. Furthermore, other remarkable phenomena are observed in nanoparticles with relatively strong surface effects. (i) In elongated particles surface effects can change the sign of the uniaxial anisotropy. (ii) In symmetric particles (spherical and truncated octahedral) with cubic core anisotropy surface effects can change the sing of the latter. We also show that the competition between the core and surface anisotropies leads to a new energy that contributes to both the second- and fourth-order effective anisotropies. We evaluate energy barriers ΔE as functions of the strength of the surface anisotropy and the particle size. The results are analyzed with the help of the effective one-spin potential, which allows us to assess the consistency of the widely used formula ΔE/V= K∞ +6 Ks /D, where K∞ is the core anisotropy constant, Ks is a phenomenological constant related to surface anisotropy, and D is the particle's diameter. We show that the energy barriers are consistent with this formula only for elongated particles for which the surface contribution to the effective uniaxial anisotropy scales with the surface and is linear in the constant of the Néel surface anisotropy. © 2007 The American Physical Society.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1 M. Jamet, W. Wernsdorfer, C. Thirion, D. Mailly, V. Dupuis, P. M´elinon, and A. P´erez, Phys. Rev. Lett. 86, 4676 (2001).
    • 2 M. Jamet, W. Wernsdorfer, C. Thirion, V. Dupuis, P. M´elinon, A. P´erez, and D. Mailly, Phys. Rev. B 69, 24401 (2004).
    • 3 F. Bodker, S. M¨orup, and S. Linderoth, Phys. Rev. Lett. 72, 282 (1994).
    • 4 F. Luis, J. M. Torres, L. M. Garcia, J. Bartolome, J. Stankiewicz, F. Petroff, F. Fettar, J.-L. Maurrice, and A. Vaures, Phys. Rev. B 65, 094409 (2002).
    • 5 Yu. Xie and J. Blackman, Phys. Rev. B 69, 172407 (2002).
    • 6 C. Binns, S. H. Baker, K. W. Edmons, P. Pinetti, M. J. Maher, S. H. Louch, S. S. Dhesi, N. B. Brookes, J. Phys.: Condensed Matter 318, 350 (2002).
    • 7 H. Kachkachi and M. Dimian, Phys. Rev. B 66, 174419 (2002).
    • 8 L. N´eel J.Phys Radium 15, 376 (1954).
    • 9 R. H. Victora and J. M. MacLaren, Phys. Rev. B 47, 11583 (1993).
    • 10 E. Tronc et al., J. Magn. Magn. Mater. 262, 6 (2003).
    • 11 M. Respaud, J. M. Broto, H. Rakoto, A. R. Fert, L. Thomas, B. Barbara, M. Verelst, E. Snoeck. P. Lecante, A. Mosset, J. Osuna, T. Ould E. P. Lecante, A. Mosset, J. Osuna, T. Ould Ely, C. Amiens, and B. Chaudret, Phys. Rev. B 57, 2925 (1998).
    • 12 D. A. Dimitrov and Wysin, Phys. Rev. B 50, 3077 (1994).
    • 13 D. Weller, J. Stohr, R. Nakajima, A. Carl, M. G. Samant, C. Chappert, R. Megy, P. Beaucillain, P. Veillet, and G. A. Held, Phys Rev Lett; 75 , 3752 (1995).
    • 14 H. Kachkachi, A. Ezzir, M. Nogu`es, and E. Tronc, Eur. Phys. J. B 14, 681 (2000).
    • 15 H. Kachkachi and D. A. Garanin, Physica A 300, 487 (2001).
    • 16 H. Kachkachi and D. A. Garanin, Eur. Phys. J. B 22, 291 (2001).
    • 17 O. Iglesias and A. Labarta, Phys. Rev. B 63, 184416 (2001).
    • 18 D. A. Garanin and H. Kachkachi, Phys. Rev. Lett. 90, 65504 (2003).
    • 19 H. Kachkachi and H. Mahboub, J. Magn. Magn. Mater. 278, 334 (2004).
    • 20 H. Kachkachi and D. A. Garanin, in Surface effects in magnetic nanoparticles, edited by D. Fiorani (Springer, Berlin, 2005), p. 75.
    • 21 H. Kachkachi and E. Bonet, Phys. Rev. B 73, 224402 (2006).
    • 22 E. Paz, F. Garcia Sanchez, and O. Chubykalo-Fesenko, unpublished (2006).
    • 23 R. H. Kodama and A. E. Berkovitz, Phys. Rev. B 59, 6321 (1999).
    • 24 M. S. Daw and M. I. Baskes, Phys. Rev. Lett. 50, 1285 (1983).
    • 25 F. Dorfbauer, T. Schrefl, M. Kirschner, G. Hrkac, D. Suess, O. Ertl, and J. Fidler, J. Appl. Phys. 99, 08G706 (2006).
    • 26 R. Evans, U. Nowak, F. Dorfbauer, T. Schrefl, O. Mryasov, R. W. Chantrell, and G. Crochola, J. Appl. Phys. 99, 086703 (2006).
    • 27 H. Kachkachi and D.A. Garanin, In preparation (2006).
    • 28 H. Kachkachi, Effects of spin non-collinearities in magnetic nanoparticles (Invited Paper at III Joint European Magnetic Symposia (JEMS), San Sebastian (Spain), 26-30 June 2006).
    • 29 R. Skomski and J. M. D. Coey, Permanent Magnetism, Studies in Condensed Matter Physics Vol. 1 (IOP Publishing, London, 1999).
    • 30 K. B. Urquhart, B. Heinrich, J. F. Cochran, A. S. Arrott, and Myrtle, J. Appl. Phys. 64, 5334 (1988).
    • 31 R. Perzynski and Yu. L. Raikher, in Surface effects in magnetic nanoparticles, edited by D. Fiorani (Springer, Berlin, 2005), p. 141.
    • 32 K. Yosida and M. Tachiki, Prog. Theor. Phys., 17, 331 (1957).
    • 33 Y. Xie and J. Blackman, J. Phys.: Condensed Matter 16, 3163 (2004).
    • 34 N. Mryasov, U. Nowak, K. Y. Guslienko, and R. W. Chantrell, Europhys. Lett. 69, 805 (2005).
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article