You have just completed your registration at OpenAire.
Before you can login to the site, you will need to activate your account.
An e-mail will be sent to you with the proper instructions.
Important!
Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version
of the site upon release.
We study the equation describing the motion of a nonparametric surface according to its mean curvature flow. This is a nonlinear nonuniformly parabolic PDE that can be discretized in space via a finite element method. We conduct an aposteriori error analysis of the spatial discretization and derive upper bounds on the error in terms of computable estimators based on local residual indicators. The reliability of the estimators is illustrated with two numerical simulations, one of which treats the case of a singular solution.
[1] L. Ambrosio, Lecture Notes on Geometric Evolution Problems, Distance Function, and Viscosity Solutions, Pubblicazioni 1029, Istituto di Analisi Numerica del CNR, Pavia, Italy, 1997.
[2] I. Babuˇska and W. C. Rheinboldt, Error estimates for adaptive finite element computations, SIAM J. Numer. Anal., 15 (1978), pp. 736-754.
[3] E. Ba¨nsch, Finite element discretization of the Navier-Stokes equations with a free capillary surface, Numer. Math., 88 (2001), pp. 203-235.
[4] G. Barles and P. E. Souganidis, A new approach to front propagation problems: Theory and applications, Arch. Ration. Mech. Anal., 141 (1998), pp. 237-296.
[5] K. A. Brakke, The Motion of a Surface by Its Mean Curvature, Princeton University Press, Princeton, NJ, 1978.
[6] K. Deckelnick, Error bounds for a difference scheme approximating viscosity solutions of mean curvature flow, Interfaces Free Bound., 2 (2000), pp. 117-142.
[7] K. Deckelnick and G. Dziuk, Error estimates for a semi-implicit fully discrete finite element scheme for the mean curvature flow of graphs, Interfaces Free Bound., 2 (2000), pp. 341- 359.
[8] G. Dziuk, Numerical schemes for the mean curvature flow of graphs, in Variations of Domain and Free-Boundary Problems in Solid Mechanics (Paris, 1997), Kluwer Academic Publishers, Dordrecht, The Netherlands, 1999, pp. 63-70.
[9] K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic problems. I. A linear model problem, SIAM J. Numer. Anal., 28 (1991), pp. 43-77.
[10] K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic problems. IV. Nonlinear problems, SIAM J. Numer. Anal., 32 (1995), pp. 1729-1749.
[12] F. Fierro and A. Veeser, On the a posteriori error analysis for equations of prescribed mean curvature, Math. Comp., 72, (2003), pp. 1611-1634.
[13] M. Fried and A. Veeser, Simulation and numerical analysis of dendritic growth, in Ergodic Theory, Analysis, and Efficient Simulation of Dynamical Systems, Springer, Berlin, 2001, pp. 225-252 (with color plates on pp. 812-813).
[15] G. Huisken, Local and global behaviour of hypersurfaces moving by mean curvature, in Differential Geometry: Partial Differential Equations on Manifolds (Los Angeles, CA, 1990), AMS, Providence, RI, 1993, pp. 175-191.
[16] G. M. Lieberman, Second Order Parabolic Differential Equations, World Scientific Publishing, River Edge, NJ, 1996.
[17] R. H. Nochetto, G. Savare´, and C. Verdi, A posteriori error estimates for variable timestep discretizations of nonlinear evolution equations, Comm. Pure Appl. Math., 53 (2000), pp. 525-589.
[18] R. H. Nochetto, A. Schmidt, and C. Verdi, A posteriori error estimation and adaptivity for degenerate parabolic problems, Math. Comp., 69 (2000), pp. 1-24.
[19] M. Picasso, Adaptive finite elements for a linear parabolic problem, Comput. Methods Appl. Mech. Engrg., 167 (1998), pp. 223-237.
[20] A. Schmidt, Computation of three dimensional dendrites with finite elements, J. Comput. Phys., 125 (1996), pp. 293-312.
[21] A. Schmidt and K. G. Siebert, ALBERT-Software for scientific computations and applications, Acta Math. Univ. Comenian. (N.S.), 70 (2000), pp. 105-122.
[22] L. R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions, Math. Comp., 54 (1990), pp. 483-493.
[23] J. Sethian and S. J. Osher, The design of algorithms for hypersurfaces moving with curvaturedependent speed, in Nonlinear Hyperbolic Equations-Theory, Computation Methods, and Applications (Aachen, 1988), Vieweg, Braunschweig, 1989, pp. 544-551.
[24] J. E. Taylor, J. W. Cahn, and C. A. Handwerker, Geometric models of crystal growth, Acta Metall. Mater., 40 (1992), pp. 1443-1474.
[25] N. N. Uraltseva, Boundary regularity for flows of nonparametric surfaces driven by mean curvature, in Motion by Mean Curvature and Related Topics (Trento, 1992), G. Buttazzo and A. Visintin, eds., De Gruyter, Berlin, 1994, pp. 198-209.
[26] R. Verfu¨rth, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques, Wiley-Teubner, Chichester-Stuttgart, 1996.
[27] R. Verfu¨rth, A posteriori error estimates for nonlinear problems: Lr(0, T ; W 1,ρ(ω))-error estimates for finite element discretizations of parabolic equations, Numer. Methods Partial Differential Equations, 14 (1998), pp. 487-518.
[28] N. J. Walkington, Algorithms for computing motion by mean curvature, SIAM J. Numer. Anal., 33 (1996), pp. 2215-2238.