Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Itano, T.; Akinaga, T.; Generalis, S. C.; Sugihara-Seki, M. (2013)
Languages: English
Types: Article
Subjects: Physics - Fluid Dynamics

Classified by OpenAIRE into

arxiv: Physics::Fluid Dynamics, Astrophysics::Galaxy Astrophysics
An outline of the state space of planar Couette flow at high Reynolds numbers (Re<105) is investigated via a variety of efficient numerical techniques. It is verified from nonlinear analysis that the lower branch of the hairpin vortex state (HVS) asymptotically approaches the primary (laminar) state with increasing Re. It is also predicted that the lower branch of the HVS at high Re belongs to the stability boundary that initiates a transition to turbulence, and that one of the unstable manifolds of the lower branch of HVS lies on the boundary. These facts suggest HVS may provide a criterion to estimate a minimum perturbation arising transition to turbulent states at the infinite Re limit. © 2013 American Physical Society.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] J. F. Gibson, J. Halcrow, and P. Cvitanovic, J. Fluid Mech.
    • 638, 243 (2009). [2] T. Itano and S. C. Generalis, Phys. Rev. Lett. 102, 114501
    • (2009). [3] G. Kawahara, M. Uhlmann, and L. van Veen, Annu. Rev.
    • Fluid Mech. 44, 203 (2012). [4] H. Wedin and R. R. Kerswell, J. Fluid Mech. 508, 333
    • (2004). [5] M. Nagata, J. Fluid Mech. 217, 519 (1990). [6] R. M. Clever and F. H. Busse, J. Fluid Mech. 344, 137
    • (1997). [7] F. Waleffe, Phys. Rev. Lett. 81, 4140 (1998). [8] V. Romanov, Funct. Anal. Appl. 7, 137 (1973). [9] O. Dauchot and F. Daviaud, Phys. Fluids 7, 335 (1995). [10] A. Monokrousos, A. Bottaro, L. Brandt, A. Di Vita, and
    • D. S. Henningson, Phys. Rev. Lett. 106, 134502 (2011). [11] J. Wang, J. Gibson, and F. Waleffe, Phys. Rev. Lett. 98,
    • 204501 (2007). [12] J. Del A´ lamo and J. Jime´nez, Annual Research Briefs -
    • 2001 (Center for Turbulence Research) (Stanford
    • University, Stanford, 2001), p. 329. [13] Y. Hwang and C. Cossu, Phys. Rev. Lett. 105, 044505
    • (2010). [14] T. Herbert, Annu. Rev. Fluid Mech. 20, 487 (1988). [15] S. K. Robinson, Annu. Rev. Fluid Mech. 23, 601 (1991). [16] R. J. Adrian, Phys. Fluids 19, 041301 (2007). [17] X. Wu and P. Moin, J. Fluid Mech. 630, 5 (2009). [18] P. Schlatter, R. O¨ rlu¨, Q. Li, G. Brethouwer, A. V.
    • Sweden (University of Ottawa, Ottawa, Canada, 2011). [19] S. C. Generalis and T. Itano, Phys. Rev. E 82, 066308
    • (2010). [20] K. Deguchi and M. Nagata, Phys. Rev. E 82, 056325 (2010). [21] B. Eckhardt, T. M. Schneider, B. Hof, and J. Westerweel,
    • Annu. Rev. Fluid Mech. 39, 447 (2007). [22] T. Itano and S. Toh, J. Phys. Soc. Jpn. 70, 703 (2001). [23] J. Halcrow, J. F. Gibson, P. Cvitanovic, and D. Viswanath,
    • J. Fluid Mech. 621, 365 (2009). [24] Y. Duguet, L. Brandt, and B. R. J. Larsson, Phys. Rev. E
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
  • No similar publications.

Share - Bookmark

Published in

Funded by projects

  • EC | T2T-VDG

Cite this article