Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Takashima, Yohei; Miras, Haralampos N.; Glatzel, Stefan; Cronin, Lee (2016)
Publisher: Royal Society of Chemistry
Languages: English
Types: Article
We report examples of crystal surface modification of polyoxometalate open frameworks whereby the use of pyrrole or aniline as monomers leads to the formation of the corresponding polymers via an oxidative polymerization process initiated by the redox active POM scaffolds. Guest-exchange experiments demonstrate that the polymers can finely tune the guest exchange rate and their structural integrity is retained after the surface modifications. In addition, the formation of polyoxometalate-based self-fabricating tubes by the dissolution of Keggin-based network crystals were also modulated by the polymers, allowing a new type of hybrid inorganic polymer with an organic coating to be fabricated.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 40 1. D.-Y. Du, J.-S. Qin, S.-L. Li, Z.-M. Su and Y.-Q. Lan Chem. Soc. Rev., 2014, 43, 4615. 2. a) A. Proust, B. Matt, R. Villanneau, G. Guillemot, P. Gouzerh and G. Izzet, Chem. Soc. Rev., 2012, 41, 7605; b) B. Nohra, H. El Moll, L. M. R. Albelo, P. Mialane, J. Marrot, C. Mellot-Draznieks, M. O' 45 Keeffe, R. N. Biboum, J. Lemaire, B. Keita, L. Nadjo and A. Dolbecq, J. Am. Chem. Soc., 2011, 133, 13363. 3. a) C. Ritchie, C. Streb, J. Thiel, S. G. Mitchell, H. N. Miras, D.-L. Long, T. Boyd, R. D. Peacock, T. McGlone and L. Cronin, Angew. Chem. 2008, 120, 6987; Angew. Chem. Int. Ed. 2008, 47, 6881; b) J.
    • 50 Thiel, C. Ritchie, C. Streb, D.-L. Long and L. Cronin, J. Am. Chem. Soc. 2009, 131, 4180; c) J. Thiel, C. Ritchie, H. N. Miras, C. Streb, S. G. Mitchell, T. Boyd, M. N. C. Ochoa, M. H. Rosnes, J. McIver, D.-L. Long and L. Cronin, Angew. Chem. 2010, 122, 7138; Angew. Chem. Int. Ed. 2010, 49, 6984; d) C. Streb, C. Ritchie, D.-L. Long, P. Kögerler and L. Cronin, Angew. Chem. 2007, 119, 7723; Angew. Chem. Int. Ed. 2007, 46, 7579; e) S. G. Mitchell, C. Streb, H. N. Miras, T. Boyd, D.- L. Long and L. Cronin, Nat. Chem. 2010, 2, 308.
    • 4. a) H. N. Miras, J. Yan, D.-L. Long and L. Cronin, Chem. Soc. Rev., 2012, 41, 7403; b) H. N. Miras, L. Vilà-Nadal and L. Cronin, Chem. Soc. Rev., 2014, 43, 5679; d) N. Mizuno and M. Misono, Chem. Rev. 1998, 98, 199; e) J. T. Rhule, C. L. Hill, D. A. Judd and R. F. Schinazi, Chem. Rev. 1998, 98, 327; g) T. Yamase, Chem. Rev. 1998, 98, 307.
    • 5. a) N. K. Mal, M. Fujiwara and Y. Tanaka, Nature 2003, 421, 350; b) S. Angelos, Y.-W. Yang, N. M. Khashab, J. F. Stoddart and J. I. Zink, J. Am. Chem. Soc. 2009, 131, 11344; c) W. J. Rieter, K. M. Taylor and W. Lin, J. Am. Chem. Soc. 2007, 129, 9852.
    • 6. a) Z. Wang and S. M. Cohen, J. Am. Chem. Soc. 2007, 129, 12368; b) K. K. Tanabe, Z. Wang and S. M. Cohen, J. Am. Chem. Soc. 2008, 130, 8508; c) Y. Zhu and M. Fujiwara, Angew. Chem. 2007, 119, 2291; Angew. Chem. Int. Ed. 2007, 46, 2241.
    • 7. A. Brunsen, J. Cui, M. Ceolín, A. del Campo, G. J. A. A. Soler-Illia and O. Azzaroni, Chem. Commun. 2012, 48, 1422.
    • 8. J. R. Bryant, J. E. Taves and J. M. Mayer, Inorg. Chem. 2002, 41, 2769.
    • 9. a) X. Chen, J. Devaux, J.-P. Issi and D. Billaud, Poly. Eng. Sci. 1995, 35, 642; b) C.-G. Wu, D. C. DeGroot, H. O. Marcy, J. L. Schindler, C. R. Kannewurf, Y.-J. Liu, W. Hirpo and M. G. Kanatzidis, Chem. Mater. 1996, 8, 1992.
    • 10. a) E. I. Ross-Medgaarden and I. E. Wachs, J. Phys. Chem. C 2007, 111, 15089; b) M. Cochet, G. Louarn, S. Quillard, M. I. Boyer, J. P. Buisson and S. Lefrant, J. Raman Spectrosc. 2000, 31, 1029.
    • 11. a) J. P. Pouget, M. E. Józefowicz and A. J. Epstein, Macromolecules, 1991, 24, 779; b) D. Li, J. Huang and R. B. Kaner, Acc. Chem. Res. 2009, 42, 135.
    • 12. a) C. Ritchie, G. J. T. Cooper, Y.-F. Song, C. Streb, H. Yin, A. D. C. Parenty, D. A. MacLaren and L. Cronin, Nat. Chem. 2009, 1, 47; b) G. J. T. Cooper and L. Cronin, J. Am. Chem. Soc. 2009, 131, 8368; c) G. J. T. Cooper, A. G. Boulay, P. J. Kitson, C. Ritchie, C. J. Richmond, J. Thiel, D. Gabb, R. Eadie, D.-L. Long and L. Cronin, J. Am. Chem. Soc. 2011, 133, 5947; d) A. G. Boulay, G. J. T. Cooper and L. Cronin, Chem. Commun. 2012, 48, 5088; e) G. J. T. Cooper, R. W. Bowman, E. P. Magennis, F. Fernandez-Trillo, C. Alexander, M. J. Padgett and L. Cronin, Angew. Chem. 2012, 124, 12926; Angew. Chem. Int. Ed. 2012, 51, 12754.
    • 13. G. Jeon, S. Y. Yang, J. Byun and J. K. Kim, Nano Lett. 2011, 11, 1284.
  • No related research data.
  • No similar publications.
  • BioEntity Site Name
    1aniProtein Data Bank

Share - Bookmark

Funded by projects


Related to

  • fet-fp7FET Proactive: FET Proactive: Unconventional Computation (UCOMP)
  • fet-fp7FET Proactive: Microscale Chemically Reactive Electronic Agents

Cite this article