LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Adcock, T. A. A.; Taylor, P. H.; Yan, S.; Ma, Q.; Janssen, P. A. E. M. (2011)
Publisher: ROYAL SOCIETY
Languages: English
Types: Article
Subjects: TA
The ‘New Year Wave’ was recorded at the Draupner platform in the North Sea and is a rare high quality measurement of a ‘freak’ or ‘rogue’ wave. The wave has been the subject of much interest and numerous studies. Despite this, the event has still not been satisfactorily explained. One piece of information which was not directly measured at the platform, but which is vital to understanding the nonlinear dynamics is the wave’s directional spreading. This paper investigates the directionality of the Draupner wave and concludes it might have resulted from two wave-groups crossing, whose mean wave directions were separated by about 90◦ or more. This result has been deduced from a set-up of the low frequency second order difference waves under the giant wave, which can be explained only if two wave systems are propagating at such an angle. To check whether second order theory is satisfactory for such a highly non-linear event, we have run numerical simulations using a fully non-linear potential flow solver, which confirm the conclusion deduced from the second order theory. This is backed up by a hindcast from ECMWF which shows swell waves propagating at ∼ 80◦ to the wind sea. Other evidence which supports our conclusion are the measured forces on the structure, the magnitude of the second order sum waves and some other instances of freak waves occurring in crossing sea states.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Adcock, T. A. A. 2009 Aspects of wave dynamics and statistics on the open ocean. DPhil Thesis, University of Oxford.
    • Adcock, T. A. A. & Taylor, P. H. 2009a Estimating ocean wave directional spreading from an Eulerian surface elevation time-history. Proc. Roy. Soc. A, 465(2111), 3361-3381. (doi:10.1098/rspa.2009.0031)
    • Adcock, T. A. A. & Taylor, P. H. 2009b Focusing of unidirectional wave-groups on deep water, an approximate NLS-equation based model. Proc. Roy. Soc. A, 465(2110), 3083-3102. (doi:10.1098/rspa.2009.0224)
    • Adcock, T. A. A. & Yan, S. 2010 The focusing of uni-directional Gaussian wavegroups in finite depth. In Proc. 29th Int. Conf. Ocean, Offshore and Arctic Engineering (OMAE), Shanghai, China, p. 20993.
    • Boccotti, P. 1983 Some new results on statistical properties of wind waves. Appl. Ocean Res., 5, 134-140.
    • Christou, M., Tromans, P., Vanderschuren, L. & Ewans, K. 2009 Second-Order Crest Statistics Of Realistic Sea States. In Proceedings of the 11th International Workshop on Wave Hindcasting and Forecasting, Halifax, Canada.
    • Clauss, G. F. & Klein, M. 2009 The New Year Wave: Spatial Evolution of an Extreme Sea State. Journal of Offshore Mechanics and Arctic Engineering, 131(4), 041001. (doi:10.1115/1.3160533)
    • Dalzell, J. F. 1999 A note on finite depth second-order wave-wave interactions. Applied Ocean Research, 21(3), 105-111. (doi:10.1016/S0141-1187(99)00008-5)
    • Dean, R. G. & Sharma, J. N. 1981 Simulation of Wave Systems due to Non-Linear Directional Spectra. In Proceedings, International Symposium on Hydrodynamics in Ocean Engineering, vol. 2, pp. 1211-1222. Norwegian Institute of Technology, Trondheim, Norway.
    • Donelan, M. A. & Magnusson, A. K. 2005 The role of meteorological focusing in generating rogue wave conditions. In Proceedings of the 14th winter workshop 'Aha Huliko'.
    • Dysthe, K., Krogstad, H. E. & Muller, P. 2008 Oceanic rogue waves. Annual Review of Fluid Mechanics, 40(1), 287-310. (doi:10.1146/annurev.fluid.40. 111406.102203)
    • Ewans, K. C. 1998 Observations of the directional spectrum of fetch-limited waves. J. Phys. Oceanogr., 28, 495-512.
    • Ewans, K. C. & Buchner, B. 2008 Wavelet analysis of an extreme wave in a model basin. In Proc. 27 Int. Conf. Offshore Mech and Arctic Engg., Estoril, Portugal. 57499.
    • Ferreira de Pinho, U., Liu, P. C. & Ribeiro, C. E. P. 2004 Freak Waves at Campos Basin, Brazil. Geofizica, 22, 53-67.
    • Forristall, G. Z. 2000 Wave crest distributions: Observations and second-order theory. J. Phys. Oceanogr., 30, 1931Ű-1943. (doi:10.1175/1520-0485(2000) 030<1931:WCDOAS>2.0.CO;2)
    • Gibbs, R. G. & Taylor, P. H. 2005 Formation of walls of water in ŚfullyŠ nonlinear simulations. Applied Ocean Research, 27(3), 142-157. (doi:10.1016/j.apor.2005. 11.009)
    • Gramstad, O. & Trulsen, K. 2007 Influence of crest and group length on the occurrence of freak waves. Journal of Fluid Mechanics, 582(1), 463 - 472. (doi:10.1017/S0022112007006507)
    • Guedes Soares, C., Cherneva, Z. & Antão, E. M. 2004 Steepness and asymmetry of the largest waves in storm sea states. Ocean Engineering, 31(8-9), 1147 - 1167. (doi:10.1016/j.oceaneng.2003.10.014)
    • Hansteen, O. E., Jostad, H. P. & Tjelta, T. I. 2003 Observed platform response to a “monster” wave. In Field measurements in geomechanics, pp. 73-86. Sweets & Zeitlinger.
    • Haver, S. 2004 A Possible Freak Wave Event Measured at the Draupner Jacket January 1 1995. In Rogue waves Workshop, Brest. www.ifremer.fr/webcom/stw2004/rw/fullpapers/walk_on_haver.pdf.
    • Hjelmervik, K. B. & Trulsen, K. 2009 Freak wave statistics on collinear currents. J. Fluid Mech., 637, 267-284. (doi:10.1017/S0022112009990607)
    • Janssen, P. A. E. M. 2003 Nonlinear Four-Wave Interactions and Freak Waves. J. Phys. Oceanogr., 33, 863-884.
    • Janssen, P. A. E. M. 2009 On some consequences of the canonical transformation in the Hamiltonian theory of water waves. Journal of Fluid Mechanics, 637(1), 1-44. (doi:10.1017/S0022112009008131)
    • Janssen, P. A. E. M. & Onorato, M. 2007 The Intermediate Water Depth Limit of the Zakharov Equation and Consequences for Wave Prediction. J. Phys. Oceanogr., 37, 2389-2400.
    • Jensen, J. J. 2005 Conditional second-order short-crested water waves applied to extreme wave episodes. J. Fluid Mech., 545, 29-40. (doi:10.1017/ S0022112005006841)
    • Jensen, R. E., Cardone, V. J. & Cox, A. T. 2006 Performance of third generation wave models in extreme hurricanes. In 9th International Wind and Wave Workshop, September 25-29, Victoria, BC.
    • Johannessen, T. B. & Swan, C. 2001 A laboratory study of the focusing of transient and directionally spread surface water waves. Proc. R. Soc. A, 457, 971-1006. (doi:10.1017/S0022112005006841)
    • Katsardi, V. & Swan, C. 2011 The evolution of large non-breaking wave in intermediate and shallow water. I. Numerical calculations of uni-directional seas. Proc. R. Soc. A, 467(2127), 778-805. (doi:10.1098/rspa.2010.0280)
    • Kharif, C. & Pelinovsky, E. 2003 Physical mechanisms of the rogue wave phenomenon. European Journal of Mechanics - B/Fluids, 22(6), 603-634. (doi: 10.1016/j.euromechflu.2003.09.002)
    • Komen, G. J., Cavaleri, L., Donelan, M., Hasselmann, K., Hasselmann, S. & Janssen, P. A. E. M. 1994 Dynamics and modelling of ocean waves. CUP.
    • Krogstad, H. E., Magnusson, A.-K. & Donelan, M. A. 2006 Wavelet and Local Directional Analysis of Ocean Waves. Int. J. Offshore and Polar Eng., 16, 97-103.
    • Liu, P. C. 2007 A chronology of freaque wave encounters. Geofizika, 24(1), 57-70.
    • Ma, Q. W. 2008 Numerical Generation of Freak Waves Using MLPG_R and QALE-FEM Methods. CMES, 18, 223-234. (doi:10.1016/j.jcp.2005.06.014)
    • Ma, Q. W. & Yan, S. 2009 QALE-FEM for Numerical Modelling of Nonlinear Interaction between 3D Moored Floating Bodies and Steep Waves. International Journal for Numerical Methods in Engineering, 78, 713-756. (doi:10.1016/j.jcp. 2005.06.014)
    • Madsen, P. A. & Fuhrman, D. R. 2006 Third-order theory for bichromatic bi-directional water waves. J.Fluid Mech., 557, 369-397. (doi:10.1017/ S0022112006009815)
    • Onorato, M., Osborne, A., Serio, M., Cavaleri, L., Brandini, C. & Stansberg, C. 2006a Extreme waves, modulational instability and second order theory: wave flume experiments on irregular waves. European Journal of Mechanics - B/Fluids, 25(5), 586-601. (doi:10.1016/j.euromechflu.2006.01.002)
    • Onorato, M., Osborne, A. R. & Serio, M. 2006b Modulational Instability in Crossing Sea States: A Possible Mechanism for the Formation of Freak Waves. Phys. Rev. Lett., 96(1), 014 503.
    • Onorato, M., Waseda, T., Toffoli, A., Cavaleri, L., Gramstad, O., Janssen, P. A. E. M., Kinoshita, T., Monbaliu, J., Mori, N. et al. 2009 Statistical properties of directional ocean waves: The role of the modulational instability in the formation of extreme events. Physical Review Letters, 102(11), 114502. (doi: 10.1103/PhysRevLett.102.114502)
    • Prybot, P. K. 2007 Rogue wave slams Gloucester dragger. Gloucester Daily Times, 28 April 2007.
    • Rosenthal, W. & Lehner, S. 2008 Rogue Waves: Results of the MaxWave Project. Journal of Offshore Mechanics and Arctic Engineering, 130(2). (doi:10.1115/ 1.2918126)
    • Shukla, P. K., Marklund, M. & Stenflo, L. 2007 Modulational instability of nonlinearly interacting incoherent sea states. JETP Letters, 84(12). (doi: 10.1134/S0021364006240039)
    • Toffoli, A., Gramstad, O., Trulsen, K., Monbaliu, J., Bitner-Gregersen, E. & Onorato, M. 2010 Evolution of weakly nonlinear random directonal wave: laboratory experiments and numerical simulations. J. Fluid Mech., 664, 313- 336. (doi:10.1017/S002211201000385X)
    • Toffoli, A., Lefèvre, J., Bitner-Gregersen, E. & Monbaliu, J. 2005 Towards the identification of warning criteria: Analysis of a ship accident database. Applied Ocean Research, 27(6), 281 - 291. (doi:10.1016/j.apor.2006.03.003)
    • Toffoli, A., Onorato, M., Babanin, A., Bitner-Gregersen, E., Osborne, A. & Monbaliu, J. 2007 Second-Order Theory and Setup in Surface Gravity Waves: A Comparison with Experimental Data. J. Phys. Oceanogr., 37, 2726Ű-2739. (doi:10.1175\%2F2007JPO3634.1 N2)
    • Tromans, P. S., Anaturk, A. & Hagemeijer, P. 1991 A new model for the kinematics of large ocean waves- application as a design wave. In Proc. 1st Int. Conf. Offshore Mech. and Polar Engng (ISOPE), vol. 3, pp. 64-71.
    • Trulsen, K. 2001 Simulating the spatial evolution of a measured time series of a freak wave. In Proceedings of rogue waves 2000, pp. 265-273.
    • Walker, D. A. G., Taylor, P. H. & Eatock Taylor, R. 2005 The shape of large surface waves on the open sea and the Draupner New Year wave. Applied Ocean Research, 26(3-4), 73-83. (doi:10.1016/j.apor.2005.02.001)
    • Waseda, T., Kinoshita, T. & Tamura, H. 2009 Interplay of resonant and quasiresonant interaction of the directional ocean waves. J. Phys. Oceanogr., 39, 2351-2362. (doi:10.1175/2009JPO4147.1)
    • Yan, S. & Ma, Q. W. 2009 Nonlinear Simulations of 3D Freak Waves Using a Fast Numerical Method. International Journal of Offshore and Polar Engineering, 19(3), 168-175.
    • Yan, S. & Ma, Q. W. 2010a Numerical Simulation of Interaction between Wind and 2-D Freak Waves. European Journal of Mechanics - B/Fluids, 29(1), 18-31.
    • Yan, S. & Ma, Q. W. 2010b QALE-FEM for modelling 3D overturning waves. International Journal for Numerical Methods in Fluids, 63, 743-768. (doi: 10.1002/fld.2100)
    • Zheng, X. Y. & Moan, T. 2010 Freak Waves Within The Third Order Model. In Proc. 29th Int. Conf. Ocean, Offshore and Arctic Engineering (OMAE), Shanghai, China, p. 20455.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article