LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
McTavish, J.; Indjin, D.; Harrison, P. (2006)
Publisher: American Institute of Physics
Languages: English
Types: Article
Subjects:
We report on the results of our simulations of an InGaAs/InAlAs midinfrared quantum cascade laser (QCL) designed to operate in continuous wave mode at room temperature [Beck et al., Science 295, 301 (2002)]. Our physical model of the device consists of a self-consistent solution of the subband population rate equations and accounts for all electron-longitudinal-optical phonon and electron-electron scattering rates, as well as an evaluation of the temperature of the nonequilibrium electron distribution. We also consider the role of the doping density and its influence on the electron dynamics. We found that the temperature of the nonequilibrium electron distribution differed significantly from the lattice temperature and that this temperature increased with applied electric field and current density, with coupling constants somewhat larger than analogous GaAs based midinfrared QCLs. Our simulations also reveal physical processes of the device that are not apparent from the experimental measurements, such as the role of electron-electron scattering. © 2006 American Institute of Physics
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y.
    • Cho, Science 264, 553 1994 .
    • 2F. Capasso, C. Gmachl, D. L. Sivco, and A. Y. Cho, Phys. Today 55 5 34 2002 .
    • 3C. Sirtori, Nature London 417, 132 2000 .
    • 4R. F. Kazarinov and R. A. Suris, Sov. Phys. Semicond. 5, 707 1971 .
    • 5R. F. Kazarinov and R. A. Suris, Sov. Phys. Semicond. 6, 120 1972 .
    • 6C. Gmachl, A. Trediccuci, D. L. Sivco, A. L. Hutchinson, F. Capasso, and A. Y. Cho, Science 286, 749 1999 .
    • 7C. Gmachl, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, F. Capasso, and A. Y. Cho, Appl. Phys. Lett. 79, 572 2001 .
    • 8C. Gmachl, D. L. Sivco, R. Colombelli, F. Capasso, and A. Y. Cho, Nature London 415, 883 2002 .
    • 9M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E.
    • Gini, and H. Melchior, Science 295, 301 2002 .
    • 10A. Evans, J. S. Yu, J. David, L. Doris, K. Mi, S. Slivken, and M. Razeghi, Appl. Phys. Lett. 84, 314 2004 .
    • 11A. Evans, J. S. Yu, S. Slivken, and M. Razeghi, Appl. Phys. Lett. 85, 2166 2004 .
    • 12R. Kohler et al., Nature London 417, 156 2002 .
    • 13J.-Y. Bengloan, A. De Rossi, V. Ortiz, X. Marcadet, M. Calligaro, I. Maurin, and C. Sirtori, Appl. Phys. Lett. 84, 2019 2004 .
    • 14C. Gmachl, A. Belyanin, D. L. Sivco, M. L. Peabody, N. Owschimikow, A. M. Sergent, F. Capasso, and A. Y. Cho, IEEE J. Quantum Electron. 39, 1345 2003 .
    • 15T. S. Mosely, A. Belyanin, C. Gmachl, D. L. Sivco, M. L. Peabody, and A.
    • Y. Cho, Opt. Express 12, 2972 2004 .
    • 16M. Troccoli, A. Belyanin, F. Capasso, E. Cubukcu, D. L. Sivco, and A. Y.
    • Cho, Nature London 433, 845 2005 .
    • 17M. Giehler, R. Hey, H. Kostial, S. Cronenberg, T. Ohtsuka, L. Schrottke, and H. T. Grahn, Appl. Phys. Lett. 82, 671 2003 .
    • 18S.-C. Lee, M. Giehler, R. Hey, T. Ohtsuka, A. Wacker, and H. T. Grahn, Semicond. Sci. Technol. 19, S45 2004 .
    • 19M. Giehler, H. Kostial, R. Hey, and H. T. Grahn, J. Appl. Phys. 96, 4755 2004 .
    • 20Y. Hirayama, J. H. Smet, L. H. Peng, C. G. Fonstad, and E. P. Ippen, Jpn.
    • J. Appl. Phys., Part 1 33, 89 1994 .
    • 21Semiconductors: Basic Data, 2nd ed., edited by O. Madelung Springer, Berlin, 1996 .
    • 22J. M. Cole, L. G. Earwaker, A. G. Cullis, N. G. Chew, and S. J. Bass, J.
    • Appl. Phys. 60, 2639 1986 .
    • 23D. Indjin, P. Harrison, R. W. Kelsall, and Z. Ikonić, J. Appl. Phys. 91, 9019 2002 .
    • 24G. A. Bastard, Wave Mechanics Applied to Semiconductor Heterostructures Les Editions de Physique, Paris, 1988 .
    • 25J. H. Smet, C. G. Fonstad, and Q. Hu, J. Appl. Phys. 79, 9305 1996 .
    • 26K. Donovan, P. Harrison, R. W. Kelsall, and P. Kinsler, Proceedings of Sixth IEEE International Conference on Terahertz Electronics, Leeds, UK, 3-4 September 1998, IEEE, New York, 1998 , pp. 223-226.
    • 27P. Harrison, D. Indjin, and R. W. Kelsall, J. Appl. Phys. 92, 6921 2002 .
    • 28Z. Ikonić, R. W. Kelsall, and P. Harrison, Phys. Rev. B 69, 235308 2004 .
    • 29Z. Ikonić, R. W. Kelsall, and P. Harrison, J. Appl. Phys. 96, 6803 2004 .
    • 30G. Scamarcio, F. Capasso, C. Sirtori, J. Faist, A. L. Hutchinson, D. L.
    • Sivco, and A. Y. Cho, Science 276, 773 1997 .
    • 31R. Bates et al., Appl. Phys. Lett. 83, 4092 2003 .
    • 32M. Troccoli, G. Scamarcio, V. Spagnolo, A. Trediccuci, C. Gmachl, F.
    • Capasso, D. L. Sivco, and M. Striccoli, Appl. Phys. Lett. 77, 1088 2000 .
    • 33P. Harrison et al., Phys. Status Solidi A 202, 980 2005 .
    • 34M. Giovannini, T. Aellen, T. Gresch, R. Maulini, J.-M. Bulliard, L. Sirigu, N. Hoyler, and J. Faist, 13th International Conference on Molecular Beam Epitaxy MBE 2004 , Edinburgh, Scotland, UK, 22-24 August 2004 unpublished .
    • 35C. Sirtori, J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, S. N. G.
    • Chu, and A. Y. Cho, Appl. Phys. Lett. 68, 1745 1996 .
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article