LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Miao, Zhongchen; Chen, Kai; Fang, Yi; He, Jianhua; Zhou, Yi; Zhang, Wenjun; Zha, Hongyuan
Languages: English
Types: Article
Subjects:
Identifiers:doi:10.1145/3001833
Identifying topic trends on microblogging services such as Twitter and estimating those topics’ future popularity have great academic and business value, especially when the operations can be done in real time. For any third party, however, capturing and processing such huge volumes of real-time data in microblogs are almost infeasible tasks, as there always exist API (Application Program Interface) request limits, monitoring and computing budgets, as well as timeliness requirements. To deal with these challenges, we propose a cost-effective system framework with algorithms that can automatically select a subset of representative users in microblogging networks in offline, under given cost constraints. Then the proposed system can online monitor and utilize only these selected users’ real-time microposts to detect the overall trending topics and predict their future popularity among the whole microblogging network. Therefore, our proposed system framework is practical for real-time usage as it avoids the high cost in capturing and processing full real-time data, while not compromising detection and prediction performance under given cost constraints. Experiments with real microblogs dataset show that by tracking only 500 users out of 0.6 million users and processing no more than 30,000 microposts daily, about 92% trending topics could be detected and predicted by the proposed system and, on average, more than 10 hours earlier than they appear in official trends lists.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Mohamed Ahmed, Stella Spagna, Felipe Huici, and Saverio Niccolini. 2013. A Peek into the Future: Predicting the Evolution of Popularity in User Generated Content. In Proceedings of the Sixth ACM International Conference on Web Search and Data Mining (WSDM '13). ACM, New York, NY, USA, 607-616. DOI:http://dx.doi.org/10.1145/2433396.2433473
    • James Allan (Ed.). 2002. Topic Detection and Tracking: Event-based Information Organization. Kluwer Academic Publishers, Norwell, MA, USA. http://dl.acm.org/citation.cfm?id=772260
    • Foteini Alvanaki, Sebastian Michel, Krithi Ramamritham, and Gerhard Weikum. 2012. See What's enBlogue: Real-time Emergent Topic Identification in Social Media. In Proceedings of the 15th International Conference on Extending Database Technology (EDBT '12). ACM, New York, NY, USA, 336-347. DOI:http://dx.doi.org/10.1145/2247596.2247636
    • Sitaram Asur, Bernardo A. Huberman, Gabor Szabo, and Chunyan Wang. 2011. Trends in Social Media: Persistence and Decay. SSRN Electronic Journal (Feb. 2011). DOI:http://dx.doi.org/10.2139/ssrn.1755748
    • Roja Bandari, Sitaram Asur, and Bernardo A. Huberman. 2012. The Pulse of News in Social Media: Forecasting Popularity. In Proceedings of the Sixth International Conference on Weblogs and Social Media (ICWSM '12). http://www.aaai.org/ocs/index.php/ICWSM/ICWSM12/paper/view/4646
    • Livio Bertacco. 2006. Exact and Heuristic Methods for Mixed Integer Linear Programs. Ph.D. Dissertation. Ph. D. thesis, Universita` degli Studi di Padova.
    • Bin Bi, Yuanyuan Tian, Yannis Sismanis, Andrey Balmin, and Junghoo Cho. 2014. Scalable Topicspecific Influence Analysis on Microblogs. In Proceedings of the 7th ACM International Conference on Web Search and Data Mining (WSDM '14). ACM, New York, NY, USA, 513-522. DOI:http://dx.doi.org/10.1145/2556195.2556229
    • Petko Bogdanov, Michael Busch, Jeff Moehlis, Ambuj K. Singh, and Boleslaw K. Szymanski. 2013. The Social Media Genome: Modeling Individual Topic-specific Behavior in Social Media. In Proceedings of the 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM '13). ACM, New York, NY, USA, 236-242. DOI:http://dx.doi.org/10.1145/2492517.2492621
    • Sergey Brin and Lawrence Page. 2012. Reprint of: The anatomy of a large-scale hypertextual web search engine. Computer Networks 56, 18 (2012), 3825-3833. DOI:http://dx.doi.org/10.1016/j.comnet.2012.10.007
    • Mario Cataldi, Luigi Di Caro, and Claudio Schifanella. 2010. Emerging Topic Detection on Twitter Based on Temporal and Social Terms Evaluation. In Proceedings of the Tenth International Workshop on Multimedia Data Mining (MDMKDD '10). ACM, New York, NY, USA, Article 4, 10 pages. DOI:http://dx.doi.org/10.1145/1814245.1814249
    • Kai Chen, Yi Zhou, Hongyuan Zha, Jianhua He, Pei Shen, and Xiaokang Yang. 2013b. Cost-effective Node Monitoring for Online Hot Eventdetection in Sina Weibo Microblogging. In Proceedings of the 22Nd International Conference on World Wide Web (WWW '13 Companion). ACM, New York, NY, USA, 107- 108. DOI:http://dx.doi.org/10.1145/2487788.2487837
    • Le Chen, Chi Zhang, and Christo Wilson. 2013a. Tweeting Under Pressure: Analyzing Trending Topics and Evolving Word Choice on Sina Weibo. In Proceedings of the First ACM Conference on Online Social Networks (COSN '13). ACM, New York, NY, USA, 89-100. DOI:http://dx.doi.org/10.1145/2512938.2512940
    • Wei Chen, Yajun Wang, and Siyu Yang. 2009. Efficient Influence Maximization in Social Networks. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD '09). ACM, New York, NY, USA, 199-208. DOI:http://dx.doi.org/10.1145/1557019.1557047
    • Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: Simplified Data Processing on Large Clusters. Commun. ACM 51, 1 (Jan. 2008), 107-113. DOI:http://dx.doi.org/10.1145/1327452.1327492
    • Pedro Domingos and Matt Richardson. 2001. Mining the Network Value of Customers. In Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD '01). ACM, New York, NY, USA, 57-66. DOI:http://dx.doi.org/10.1145/502512.502525
    • Nan Du, Le Song, Manuel Gomez-Rodriguez, and Hongyuan Zha. 2013. Scalable Influence Estimation in Continuous-Time Diffusion Networks. In Advances in Neural Information Processing Systems 26. Curran Associates, Inc., 3147-3155. http://papers.nips.cc/paper/ 4857-scalable-influence-estimation-in-continuous-time-diffusion-networks.pdf
    • Pablo A. Estevez, Pablo Vera, and Kazumi Saito. 2007. Selecting the Most Influential Nodes in Social Networks. In 2007 International Joint Conference on Neural Networks. IEEE, 2397-2402. DOI:http://dx.doi.org/10.1109/IJCNN.2007.4371333
    • Schubert Foo and Hui Li. 2004. Chinese word segmentation and its effect on information retrieval. Information Processing & Management 40, 1 (Jan. 2004), 161-190. DOI:http://dx.doi.org/10.1016/S0306-4573(02)00079-1
    • Gabriel Pui Cheong Fung, Jeffrey Xu Yu, Huan Liu, and Philip S. Yu. 2007. Time-dependent Event Hierarchy Construction. In Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD '07). ACM, New York, NY, USA, 300-309. DOI:http://dx.doi.org/10.1145/1281192.1281227
    • Manuel Gomez-Rodriguez, Jure Leskovec, and Andreas Krause. 2012. Inferring Networks of Diffusion and Influence. ACM Trans. Knowl. Discov. Data 5, 4, Article 21 (Feb. 2012), 37 pages. DOI:http://dx.doi.org/10.1145/2086737.2086741
    • Yi Han, Lei Deng, Binying Xu, Lumin Zhang, Bin Zhou, and Yan Jia. 2013. Predicting the Social Influence of Upcoming Contents in Large Social Networks. In Proceedings of the Fifth International Conference on Internet Multimedia Computing and Service (ICIMCS '13). ACM, New York, NY, USA, 17-22. DOI:http://dx.doi.org/10.1145/2499788.2499834
    • Guangyan Huang, Jing He, Yanchun Zhang, Wanlei Zhou, Hai Liu, Peng Zhang, Zhiming Ding, Yue You, and Jian Cao. 2015. Mining Streams of Short Text for Analysis of World-wide Event Evolutions. World Wide Web 18, 5 (2015), 1201-1217. DOI:http://dx.doi.org/10.1007/s11280-014-0293-1
    • David Kempe, Jon Kleinberg, and E´va Tardos. 2003. Maximizing the Spread of Influence Through a Social Network. In Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD '03). ACM, New York, NY, USA, 137-146. DOI:http://dx.doi.org/10.1145/956750.956769
    • Andrey Kupavskii, Alexey Umnov, Gleb Gusev, and Pavel Serdyukov. 2013. Predicting the Audience Size of a Tweet. In Proceedings of the Seventh International Conference on Weblogs and Social Media (ICWSM '13). http://www.aaai.org/ocs/index.php/ICWSM/ICWSM13/paper/view/6077
    • Chung-Hong Lee, Hsin-Chang Yang, Tzan-Feng Chien, and Wei-Shiang Wen. 2011. A Novel Approach for Event Detection by Mining Spatio-temporal Information on Microblogs. In 2011 International Conference on Advances in Social Networks Analysis and Mining. IEEE, 254-259. DOI:http://dx.doi.org/10.1109/ASONAM.2011.74
    • Jure Leskovec, Lars Backstrom, and Jon Kleinberg. 2009. Meme-tracking and the Dynamics of the News Cycle. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD '09). ACM, New York, NY, USA, 497-506. DOI:http://dx.doi.org/10.1145/1557019.1557077
    • Jure Leskovec, Andreas Krause, Carlos Guestrin, Christos Faloutsos, Jeanne VanBriesen, and Natalie Glance. 2007. Cost-effective Outbreak Detection in Networks. In Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD '07). ACM, New York, NY, USA, 420-429. DOI:http://dx.doi.org/10.1145/1281192.1281239
    • Juha Makkonen, Helena Ahonen-Myka, and Marko Salmenkivi. 2004. Simple Semantics in Topic Detection and Tracking. Information Retrieval 7, 3-4 (sep 2004), 347-368. DOI:http://dx.doi.org/10.1023/B:INRT.0000011210.12953.86
    • Michael Mathioudakis and Nick Koudas. 2010. TwitterMonitor: Trend Detection over the Twitter Stream. In Proceedings of the 2010 ACM SIGMOD International Conference on Management of Data (SIGMOD '10). ACM, New York, NY, USA, 1155-1158. DOI:http://dx.doi.org/10.1145/1807167.1807306
    • Zhongchen Miao, Kai Chen, Yi Zhou, Hongyuan Zha, Jianhua He, Xiaokang Yang, and Wenjun Zhang. 2015. Online Trendy Topics Detection in Microblogs with Selective User Monitoring under Cost Constraints. In 2015 IEEE International Conference on Communications (ICC '15). 1194-1200. DOI:http://dx.doi.org/10.1109/ICC.2015.7248485
    • Fred Morstatter, J u¨rgen Pfeffer, and Huan Liu. 2014. When is It Biased?: Assessing the Representativeness of Twitter's Streaming API. In Proceedings of the 23rd International Conference on World Wide Web (WWW '14 Companion). ACM, New York, NY, USA, 555-556. DOI:http://dx.doi.org/10.1145/2567948.2576952
    • Fred Morstatter, Ju¨ rgen Pfeffer, Huan Liu, and Kathleen M. Carley. 2013. Is the Sample Good Enough? Comparing Data from Twitter's Streaming API with Twitter's Firehose. In Proceedings of the Seventh International Conference on Weblogs and Social Media (ICWSM '13). 400-408. http://www.aaai.org/ocs/ index.php/ICWSM/ICWSM13/paper/view/6071
    • Seth A. Myers and Jure Leskovec. 2014. The Bursty Dynamics of the Twitter Information Network. In Proceedings of the 23rd International Conference on World Wide Web (WWW '14). ACM, New York, NY, USA, 913-924. DOI:http://dx.doi.org/10.1145/2566486.2568043
    • Mor Naaman, Hila Becker, and Luis Gravano. 2011. Hip and Trendy: Characterizing Emerging Trends on Twitter. Journal of the American Society for Information Science and Technology 62, 5 (may 2011), 902-918. DOI:http://dx.doi.org/10.1002/asi.21489
    • Ramasuri Narayanam and Yadati Narahari. 2011. A Shapley Value-Based Approach to Discover Influential Nodes in Social Networks. IEEE Transactions on Automation Science and Engineering 8, 1 (jan 2011), 130-147. DOI:http://dx.doi.org/10.1109/TASE.2010.2052042
    • Aditya Pal and Scott Counts. 2011. Identifying Topical Authorities in Microblogs. In Proceedings of the Fourth ACM International Conference on Web Search and Data Mining (WSDM '11). ACM, New York, NY, USA, 45-54. DOI:http://dx.doi.org/10.1145/1935826.1935843
    • R. Papka and J. Allan. 1998. On-Line New Event Detection Using Single Pass Clustering. Technical Report. Amherst, MA, USA.
    • Georgios Petkos, Symeon Papadopoulos, and Yiannis Kompatsiaris. 2014. Two-level Message Clustering for Topic Detection in Twitter. In Proceedings of the SNOW 2014 Data Challenge. 49-56. http://ceur-ws.org/ Vol-1150/petkos.pdf
    • Polina Rozenshtein, Aris Anagnostopoulos, Aristides Gionis, and Nikolaj Tatti. 2014. Event Detection in Activity Networks. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD '14). ACM, New York, NY, USA, 1176-1185. DOI:http://dx.doi.org/10.1145/2623330.2623674
    • Takeshi Sakaki, Makoto Okazaki, and Yutaka Matsuo. 2010. Earthquake Shakes Twitter Users: Real-time Event Detection by Social Sensors. In Proceedings of the 19th International Conference on World Wide Web (WWW '10). ACM, New York, NY, USA, 851-860. DOI:http://dx.doi.org/10.1145/1772690.1772777
    • Erich Schubert, Michael Weiler, and Hans-Peter Kriegel. 2014. SigniTrend: Scalable Detection of Emerging Topics in Textual Streams by Hashed Significance Thresholds. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD '14). ACM, New York, NY, USA, 871-880. DOI:http://dx.doi.org/10.1145/2623330.2623740
    • Aleksandr Simma and Michael I. Jordan. 2010. Modeling Events with Cascades of Poisson Processes. In Proceedings of the Twenty-Sixth Conference on Uncertainty in Artificial Intelligence (UAI '10). AUAI Press, 546-555. https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article id= 2139&proceeding id=26
    • Oren Tsur and Ari Rappoport. 2012. What's in a Hashtag?: Content Based Prediction of the Spread of Ideas in Microblogging Communities. In Proceedings of the Fifth ACM International Conference on Web Search and Data Mining (WSDM '12). ACM, New York, NY, USA, 643-652. DOI:http://dx.doi.org/10.1145/2124295.2124320
    • Yu Wang, Gao Cong, Guojie Song, and Kunqing Xie. 2010. Community-based Greedy Algorithm for Mining top-K Influential Nodes in Mobile Social Networks. In Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD '10). ACM, New York, NY, USA, 1039-1048. DOI:http://dx.doi.org/10.1145/1835804.1835935
    • Jianshu Weng, Ee-Peng Lim, Jing Jiang, and Qi He. 2010. TwitterRank: Finding Topic-sensitive Influential Twitterers. In Proceedings of the Third ACM International Conference on Web Search and Data Mining (WSDM '10). ACM, New York, NY, USA, 261-270. DOI:http://dx.doi.org/10.1145/1718487.1718520
    • Jaewon Yang and Jure Leskovec. 2011. Patterns of Temporal Variation in Online Media. In Proceedings of the Fourth ACM International Conference on Web Search and Data Mining (WSDM '11). ACM, New York, NY, USA, 177-186. DOI:http://dx.doi.org/10.1145/1935826.1935863
    • Mengmeng Yang, Kai Chen, Zhongchen Miao, and Xiaokang Yang. 2014. Cost-Effective User Monitoring for Popularity Prediction of Online User-Generated Content. In 2014 IEEE International Conference on Data Mining Workshop. 944-951. DOI:http://dx.doi.org/10.1109/ICDMW.2014.72
    • Yiming Yang, Tom Pierce, and Jaime Carbonell. 1998. A Study of Retrospective and On-line Event Detection. In Proceedings of the 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR '98). ACM, New York, NY, USA, 28-36. DOI:http://dx.doi.org/10.1145/290941.290953
  • No related research data.
  • No similar publications.
  • BioEntity Site Name
    GitHub

Share - Bookmark

Cite this article