Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Stubbington, R; Wood, PJ (2013)
Publisher: Schweizerbart
Languages: English
Types: Article

Classified by OpenAIRE into

mesheuropmc: fungi
Instream refuges are places where invertebrates persist during disturbances due to reduced adverse impacts. During droughts, low flows may be accompanied by elevated temperatures, and potential refuges including subsurface sediments and spring-fed headwaters are therefore characterized by hydrological and thermal stability. This study examined invertebrate use of benthic and interstitial habitats (analogous to the hyporheic zone) in a groundwater-dominated, perennial limnocrene spring during a supra-seasonal drought. Although exceptionally high air temperatures occurred as flow declined, environmental conditions in the spring were relatively stable, and refuge-seeking vertical migrations into interstitial habitats did not coincide with peak temperatures. However, maximum benthic abundance of two amphipods (Gammarus pulex and Crangonyx pseudogracilis) occurred shortly after the period of elevated temperatures. It is suggested that this temporary increase in the abundance of these mobile taxa reflected upstream migrations triggered by a combination of refuge-seeking behaviour and thermally-stimulated activity. In addition, the spring provided a passive refuge for many lotic invertebrate taxa. A conceptual model is presented, which illustrates the potential contribution of multiple refuges to invertebrate persistence in drought-impacted ecosystems.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Barquín, J. & Death, R. G., 2011: Downstream changes in spring-fed stream invertebrate communities: the effect of increased temperature range? - J. Limnol. 70: 134-146.
    • Belaidi, N., Taleb, A. & Gagneur, J., 2004: Composition and dynamics of hyporheic and surface fauna in relation to the management of a polluted reservoir. - Ann.
    • Limnol. 40: 237-248.
    • Berrie, A. D., 1992: The chalk-stream environment. - Hydrobiologia. 248: 3-9.
    • Boulton, A. J., 1989: Over-summering refuges of aquatic macroinvertebrates in two intermittent streams in central Victoria. - Transact. Roy. Soc. S. Austral. 113: 22-34.
    • Boulton, A. J., 2003: Parallels and contrasts in the effects of drought on stream macroinvertebrate assemblages. - Freshwat. Biol. 48: 1173-1185.
    • Boulton, A. J. & Stanley, E. H., 1995: Hyporheic processes during flooding and drying in a Sonoran Desert stream. II. Faunal dynamics. - Arch. Hydrobiol. 134: 27- 52.
    • Elliott, M. J., 2008: The ecology of riffle beetles (Coleoptera: Elmidae). - Freshwat.
    • Rev. 1: 189-203.
    • Lagerspetz, K. Y. H. & Vainio, L. A., 2006: Thermal behaviour of crustaceans. - Biol. Rev. Camb. Philos. Soc. 81: 237-258.
    • Lake, P. S., 2000: Disturbance, patchiness, and diversity in streams. - J. N. Am.
    • Benthol. Soc. 19: 573-592.
    • Lake, P. S., 2003. Ecological effects of perturbation by drought in flowing waters. - Freshwat. Biol. 48: 1161-1172.
    • Lancaster, J., 2008: Movement and dispersion of insects in stream channels: what role does flow play? - In: Lancaster, J. & Briers, R. A. (eds.): Aquatic Insects: Challenges to Populations. - CAB International, Wallingford, UK, pp. 139-157.
    • Lancaster, J. & Belyea, L. R., 1997: Nested hierarchies and scale-dependence of mechanisms of flow refugium use. - J. N. Am. Benthol. Soc. 16: 221-238.
    • Macan, T. T. & Mackereth, J. C., 1957: Notes on Gammarus pulex in the English Lake District. - Hydrobiologia 9: 1-12.
    • Mackey, A. P. & Berrie, A. D., 1991: The prediction of water temperatures in chalk streams from air temperatures. - Hydrobiologia 210: 183-189.
    • MacNeil, C., Elwood, R. W. & Dick, J. T. A., 1999: Differential microdistributions and interspecific interactions in coexisting Gammarus and Crangonyx amphipods. - Ecography 22: 415-423.
    • Malard, F. & Hervant, F., 1999: Oxygen supply and the adaptations of animals in groundwater. - Freshwat. Biol. 41: 1-30.
    • Manga, M., 1999: On the timescales characterizing groundwater discharge at springs.
    • - J. Hydrol. 219: 56-69.
    • Marsh, T., 2007: The 2004-2006 drought in southern Britain. - Weather 62: 191-196.
    • Martin, P., de Broyer, C., Fiers, F., Michel, G., Sablon, R. & Wouters, K., 2009: Biodiversity of Belgian groundwater fauna in relation to environmental conditions. - Freshwat. Biol. 54: 814-829.
    • Maazouzi, C., Piscart, C., Legier, F. & Hervant, F., 2011: Ecophysiological responses to temperature of the "killer shrimp" Dikerogammarus villosus: is the invader really stronger than the native Gammarus pulex? - Comp. Biochem. Physiol., A: Mol.
    • Integr. Physiol. 159: 268-274.
    • Met Office, 2008: Southern England: climate [online]. Available at: Exeter: Met Office [Accessed 27th November 2008].
    • Moenickes, S., Schneider, A., Muehle, L., Rohe, L., Richter, O. & Suhling, F., 2011: From population-level effects to individual response: modelling temperature dependence in Gammarus pulex. - J. Exp. Biol. 214: 3678-3687.
    • Mortensen, E., 1982: Production of Gammarus pulex L. (Amphipoda) in a small Danish stream. - Hydrobiologia 87: 77-82.
    • Prior, J. & Beswick, M., 2007: The record-breaking heat and sunshine of July 2006. - Weather 62: 174-182.
    • Robertson, A. L., Smith, J. W. N., Johns, T. & Proudlove, G. S., 2009: The distribution and diversity of stygobites in Great Britain: an analysis to inform groundwater management. - Q. J. Eng. Geol. Hydrogeol. 42: 359-368.
    • Smith, H. & Wood, P. J., 2002: Flow permanence and macroinvertebrate community variability in limestone spring systems. - Hydrobiologia 487: 45-58.
    • Smith, H., Wood, P. J. & Gunn, J., 2003: The influence of habitat structure and flow permanence on invertebrate communities in karst spring systems. - Hydrobiologia 510: 53-66.
    • Solomon, S., Qin, D., Manning, M., Alley, R. B., Berntsen, T., Bindoff, N. L., Chen, Z., Chidthaisong, A., Gregory, J. M., Hegerl, G. C., Heimann, M., Hewitson, B., Hoskins, B. J., Joos, F., Jouzel, J., Kattsov, V., Lohmann, U., Matsuno, T., Molina, M., Nicholls, N., Overpeck, J., Raga, G., Ramaswamy, V., Ren, J., Rusticucci, M., Somerville, R., Stocker, T. F., Whetton, P., Wood, R. A. & Wratt, D., 2007: Technical Summary. - In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M. & Miller, H. L. (eds.). - Cambridge University Press, Cambridge, UK and New York, NY, USA.
    • Stanley, E. H., Buschman, D. L., Boulton, A. J., Grimm, N. B. & Fisher, S. G., 1994: Invertebrate resistance and resilience to intermittency in a desert stream. - Am. Midl.
    • Nat. 131: 288-300.
    • Stubbington, R., Wood, P. J. & Boulton, A. J., 2009: Low flow controls on benthic and hyporheic macroinvertebrate assemblages during supra-seasonal drought. - Hydrol. Process. 23: 2252-2263.
    • Stubbington, R., Wood, P. J. & Reid, I., 2011: Spatial variability in the hyporheic zone refugium of temporary streams. - Aquat. Sci. 73: 499-511.
    • Sutcliffe, D. W., 1993: Reproduction in Gammarus (Crustacea, Amphipoda): female strategies. - Freshwat. Forum 3: 26-64.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article