LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Wang, Fujun; Ma, Zhipeng; Gao, Weiguo; Zhao, Xingyu; Tian, Yanling; Zhang, Dawei; Liang, Cunman (2015)
Publisher: Sage Publications Ltd.
Languages: English
Types: Article
Subjects: TA
This paper presents the dynamic modeling and controller design of an XY positioning stage for semiconductor packaging. The XY stage is directly driven by two linear voice coil motors, and motion decoupling between the X and Y axes is realized through a novel flexible decoupling mechanism based on flexure hinges and preloaded spring. Through bond graph method, the dynamic models of X- and Y-axes servomechanisms are established, respectively, and the state space equations are derived. A control methodology is proposed based on force compensations and the performance of the XY stage is investigated by simulations and experimental tests. The results show that the XY stage has good performance. When the reference displacements are defined as 2 mm, the settling time of the X-axis movement is 64 ms, and the overshoot is 0.7%. Y-axis settling time is 62 ms, and the overshoot is 0.8%. X-axis positioning accuracy is 1.85 μm and the repeatability is 0.95 μm. Y-axis positioning accuracy and repeatability are 1.75 μm and 0.9 μm, respectively. In addition, the stage can track linear, circular and complex trajectories very well.\ud
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Page 33 of 37
  • No related research data.
  • No similar publications.

Share - Bookmark

Published in

Funded by projects

  • EC | FabSurfWAR

Cite this article