Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Vernall, Andrea J.; Stoddart, Leigh A.; Briddon, Stephen J.; Ng, Hui Wen; Laughton, Charles A.; Doughty, Stephen W.; Hill, Stephen J.; Kellam, Barrie (2013)
Publisher: Royal Society of Chemistry
Languages: English
Types: Article
Advances in fluorescence-based imaging technologies have helped propel the study of real-time biological readouts and analysis across many different areas. In particular the use of fluorescent ligands as chemical tools to study proteins such as G protein-coupled receptors (GPCRs) has received ongoing interest. Methods to improve the efficient chemical synthesis of fluorescent ligands remain of paramount importance to ensure this area of bioanalysis continues to advance. Here we report conversion of the non-selective GPCR adenosine receptor antagonist Xanthine Amine Congener into higher affinity and more receptor subtype-selective fluorescent antagonists. This was achieved through insertion and optimisation of a dipeptide linker between the adenosine receptor pharmacophore and the fluorophore. Fluorescent probe 27 containing BODIPY 630/650 (pKD = 9.12 ± 0.05 [hA3AR]), and BODIPY FL-containing 28 (pKD = 7.96 ± 0.09 [hA3AR]) demonstrated clear, displaceable membrane binding using fluorescent confocal microscopy. From in silico analysis of the docked ligand-receptor complexes of 27, we suggest regions of molecular interaction that could account for the observed selectivity of these peptide-linker based fluorescent conjugates. This general approach of converting a non-selective ligand to a selective biological tool could be applied to other ligands of interest.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1 V. O. Nikolaev, A. Moshkov, A. R. Lyon, M. Miragoli, P. Novak, H. Paur, M. J. Lohse, Y. E. Korchev, S. E. Harding and J. Gorelik, Science, 2010, 327, 1653-1657.
    • 2 L. T. May, T. J. Self, S. J. Briddon and S. J. Hill, Mol. Pharmacol., 2010, 78, 511-523.
    • 3 L. T. May, L. J. Bridge, L. A. Stoddart, S. J. Briddon and S. J. Hill, FASEB J., 2011, 25, 3465-3476.
    • 4 L. A. Stoddart, A. J. Vernall, J. L. Denman, S. J. Briddon, B. Kellam and S. J. Hill, Chem. Biol., 2012, 19, 1105-1115.
    • 5 K. A. Jacobson, Bioconjugate Chem., 2009, 20, 1816-1835.
    • 6 R. J. Middleton and B. Kellam, Curr. Opin. Chem. Biol., 2005, 9, 517-525.
    • 7 V. Cherezov, D. M. Rosenbaum, M. A. Hanson, S. G. F. Rasmussen, F. S. Thian, T. S. Kobilka, H.-J. Choi, P. Kuhn, W. I. Weis, B. K. Kobilka and R. C. Stevens, Science, 2007, 318, 1258-1265.
    • 8 V.-P. Jaakola, M. T. Griffith, M. A. Hanson, V. Cherezov, E. Y. T. Chien, J. R. Lane, A. P. Ijzerman and R. C. Stevens, Science, 2008, 322, 1211-1217.
    • 9 E. Y. T. Chien, W. Liu, Q. Zhao, V. Katritch, G. W. Han, M. A. Hanson, L. Shi, A. H. Newman, J. A. Javitch, V. Cherezov and R. C. Stevens, Science, 2010, 330, 1091-1095.
    • 10 S. Granier, A. Manglik, A. C. Kruse, T. S. Kobilka, F. S. Thian, W. I. Weis and B. K. Kobilka, Nature, 2012, 485, 400-404.
    • 11 A. C. Kruse, J. Hu, A. C. Pan, D. H. Arlow, D. M. Rosenbaum, E. Rosemond, H. F. Green, T. Liu, P. S. Chae, R. O. Dror, D. E. Shaw, W. I. Weis, J. Wess and B. K. Kobilka, Nature, 2012, 482, 552-556.
    • 12 J. S. Mason, A. Bortolato, M. Congreve and F. H. Marshall, Trends Pharmacol. Sci., 2012, 33, 249-260.
    • 13 (a) K. A. Jacobson, K. L. Kirk, W. L. Padgett and J. W. Daly, Mol. Pharmacol., 1986, 29, 126-133.
    • 14 B. B. Fredholm, A. P. Ijzerman, K. A. Jacobson, J. Linden and C. E. Müller, Pharmacol. Rev., 2011, 63, 1-34.
    • 15 S. Schenone, C. Brullo, F. Musumeci, O. Bruno and M. A. Botta, Curr. Top. Med. Chem., 2010, 10, 878-901.
    • 16 S. Cohen, S. M. Stemmer, G. Zozulya, A. Ochaion, R. Patoka, F. Barer, S. Bar-Yehuda, L. Rath-Wolfson, K. A. Jacobson and P. Fishman, J. Cell. Physiol., 2011, 226, 2438-2447.
    • 17 J-F. Chen, H. K. Eltzschig and B. B. Fredholm, Nat. Rev. Drug Discovery, 2013, 12, 265-286.
    • 18 B. B. Fredholm, A. P. Ijzerman, K. A. Jacobson, K. N. Klotz and J. Linden, Pharmacol. Rev., 2001, 53, 527-552.
    • 19 D. Xin, Y. Wang and J. Xiang, Pharm. Res., 2010, 27, 380- 389.
    • 20 S.-H. Lee, J. J. Moon, J. S. Miller and J. L. West, Biomaterials, 2007, 28, 3163-3170.
    • 21 S. J. Briddon, R. J. Middleton, Y. Cordeaux, F. M. Flavin, J. A. Weinstein, M. W. George, B. Kellam and S. J. Hill, Proc. Natl. Acad. Sci. U. S. A., 2004, 101, 4673-4678.
    • 22 J. G. Baker, R. J. Middleton, L. Adams, M. T. May, S. J. Briddon, B. Kellam and S. J. Hill, Br. J. Pharmacol., 2010, 159, 772-786.
    • 23 A. J. Vernall, L. A. Stoddart, S. J. Briddon, S. J. Hill and B. Kellam, J. Med. Chem., 2012, 55, 1771-1782.
    • 24 C. L. Dale, S. J. Hill and B. Kellam, MedChemCommun, 2012, 3, 333.
    • 25 Y. Cordeaux, S. J. Briddon, A. E. Megson, J. McDonnell, J. M. Dickenson and S. J. Hill, Mol. Pharmacol., 2000, 58, 1075-1084.
    • 26 S. Mitaku, T. Hirokawa and T. Tsuji, Bioinformatics, 2002, 18, 608-616.
    • 27 S. J. Briddon and S. J. Hill, Trends Pharmacol. Sci., 2007, 28, 637-645.
    • 28 M. Leopoldo, E. Lacivita, F. Berardi and R. Perrone, Drug Discovery Today, 2009, 14, 706-712.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article