LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Bromfield, Stephen M.; Posocco, Paola; Fermeglia, Maurizio; Tolosa, Juan; Herreros-López, Ana; Pricl, Sabrina; Rodríguez-López, Julián; Smith, David K. (2014)
Languages: English
Types: Article
Subjects: 1600
This study investigates transgeden (TGD) dendrimers (polyamidoamine (PAMAM)-type dendrimers modified with rigid polyphenylenevinylene (PPV) cores) and compares their heparin-binding ability with commercially available PAMAM dendrimers. Although the peripheral ligands are near-identical between the two dendrimer families, their heparin binding is very different. At low generation (G1), TGD outperforms PAMAM, but at higher generation (G2 and G3), the PAMAMs are better. Heparin binding also depends strongly on the dendrimer/heparin ratio. We explain these effects using multiscale modelling. TGD dendrimers exhibit "shape-persistent multivalency"; the rigidity means that small clusters of surface amines are locally well optimised for target binding, but it prevents the overall nanoscale structure from rearranging to maximise its contacts with a single heparin chain. Conversely, PAMAM dendrimers exhibit "adaptive multivalency"; the flexibility means individual surface ligands are not so well optimised locally to bind heparin chains, but the nanostructure can adapt more easily and maximise its binding contacts. As such, this study exemplifies important new paradigms in multivalent biomolecular recognition. Movers and shakers: The inside of the dendrimer controls the display of the surface ligands. Rigid TGDs (shown in red) have locally organised shape-persistent multivalent surface groups that can only bind well if several different heparin chains are present to satisfy all the rigidly displayed surface groups, whereas PAMAMs (shown in green) have flexible structures that show adaptive multivalency to wrap around a single heparin chain. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 6 (a) M. Mammen, S. K. Choi, G. M. Whitesides, Angew. Chem. Int. Ed.
    • 1998, 37, 2755-2794. (b) A. Mulder, J. Huskens, D. N. Reinhoudt, Org.
    • Biomol. Chem. 2004, 2, 3409-3424. (c) C. Fasting, C. A. Schalley, M.
    • Knapp, R. Haag, Angew. Chem. Int. Ed. 2012, 51, 10472-10498. (d) A.
    • Barnard, D. K. Smith, Angew. Chem. Int. Ed. 2012, 51, 6572-6581.
    • (a) F. Vogtle, G. Richard, N. Werner, Dendrimer Chemistry: Concepts, Syntheses, Properties, Applications; Wiley-VCH: Weinheim, 2009. (b) Designing Dendrimers; S. Campagna, P. Ceroni, F. Puntoriero, Eds.; Wiley: New York, 2011. (c) Dendrimers: Towards Catalytic, Material and Biomedical Uses; A.-M. Caminade, C.-O. Turrin, R. Laurent, A. Ouali, B.
    • Delavaux-Nicot, B., Eds.; Wiley: Chichester, 2011.
    • Heegaard, Dendrimers in Medicine and Biotechnology. New Molecular Tools; RSC Publishing: Cambridge, 2006. (b) Dendrimer-Based Nanomedicine; I. Majoros, J. R. Baker, Jr., Eds.; Pan Stanford Publishing: Singapore, 2008. (c) M. A. Mintzer, E. E. Simanek, Chem.
    • Rev. 2009, 109, 259-302. For key papers see: (d) J. Haensler, F. C.
    • Szoka, Bioconjugate Chem. 1993, 4, 372-379. (e) J.-F.Kukowska-Latallo, A. U. Bielinska, J. Johnson, R. Spindler, D. A. Tomalia, J. R. Baker, Proc.
    • Natl. Acad. Sci. USA 1996, 93, 4897-4902. (f) M. X. Tang, C. T.
    • Redemann, F. C. Szoka, Bioconjugate Chem. 1996, 7, 703-714. (g) M.
    • An, S. R. Parkin, J. E. DeRouchey, Soft Matter 2014, 10, 590-599.
    • (a) J.-P. Behr, Chimia 1997, 51, 34-36. (b) N. D. Sonawane, F. C. Szoka, A. S. Verkman, J. Biol. Chem. 2003, 278, 44826-44831. (c) Y. Shoji, H.
    • Nakashima, Curr. Pharm. Des. 2004, 10, 785-796. (d) D. Ouyang, H.
    • Zhang, H. S. Parekh, S. C. Smith, Biophys. Chem. 2011, 158, 126-133, (a) L. B. Jensen, G. M. Pavan, M. R. Kasimova, S. Rutherford, A. Danani, H. M. Nielsen, C. Foged, Int. J. Pharm. 2011, 416, 410-418. (b) Y. Tang, Y.-B. Li, B. Wang, R.-Y. Lin, M. van Dongen, D. M. Zurcher, X.-Y. Gu, M.
    • M. B. Holl, G. Liu, R. Qi, Mol. Pharm. 2012, 9, 1812-1821. (c) S. Biswas, P. P. Deshpande, G. Navarro, N. S. Dodwadkar, V. R. Torchilin, Biomaterials 2013, 34, 1289-1301. (d) J. Wu, W. Huang, Z. He, ScientificWorldJournal 2013, 630654.
    • Biochem. 1982, 124, 59-64. (b) Z. L. Zhong, E. V. Anslyn, J. Am. Chem.
    • Soc. 2002, 124, 9014-9015. (c) A. T. Wright, Z. L. Zhong, E. V. Anslyn, Angew. Chem. Int. Ed. 2005, 44, 5679-5682. (d) W. Sun, H. Bandmann, T. Schrader, Chem. Eur. J. 2007, 13, 7701-7707. (e) M. Wang, D. Q.
    • Zhang, G. X. Zhang, D. B. Zhu, Chem. Commun. 2008, 4469-4471. (f) K.
    • Y. Pu, B. Liu, Macromolecules 2008, 41, 6636-6640. (g) ová, J. Králová, P. Martásek, V. Král, Chem. Commun.
    • 2008, 1901-1903. (h) S. L. Wang, Y. T. Chang, Chem. Commun. 2008, 1173-1175. (i) L. T. Zeng, P. F. Wang, H. Y. Zhang, X. Q. Zhuang, Q.
    • Dai, W. M. Liu, Org. Lett. 2009, 11, 4294-4297. (j) H. Szelke, S. Schübel, J. Harenberg, R. Krämer, Chem. Commun. 2010, 46, 1667-1669. (k) S.
    • M. Bromfield, A. Barnard, P. Posocco, M. Fermeglia, S. Pricl, D. K. Smith, J. Am. Chem. Soc. 2013, 135, 2911-2914.
    • Med. Assoc. 1958, 166, 603-607. (b) C. W. Lillehei, L. P. Stems, D. M.
    • Long, D. Lepley, Ann. Surg. 1960, 151, 11-16. (c) T. W. Wakefield, P. C.
    • Andrews, S. K. Wrobleski, A. M. Kadell, A. Fazzalari, B. J. Nichol, T. Van der Kooi, J. C. Stanley, J. Surgical Res. 1994, 56, 586-593. (d) M. Kikura, 17.
    • M. K. Lee, J. H. Levy, Anesth. Analg. 1996, 83, 223-227. (e) S. Choi, D.
    • Klein, J. D. Winkler, W. F. DeGrado, Angew. Chem. Int. Ed. 2005, 44, 6685-6689. (f) F. Cunsolo, G. M. L. Consoli, C. Geraci, T. Mecca, Abiotic Heparin Antagonists, 2005, WO/2005/028422. (g) T. Mecca, G. M. L.
    • Consoli, C. Geraci, R. La Spina, F. Cunsolo, Org. Biomol. Chem. 2006, 4, 3763-3768. (h) M. Schuksz, M. M. Fuster, J. R. Brown, B. E. Crawford, D.
    • Natl. Acad. Sci. USA 2008, 105, 13075-13080. (i) K. Kaminski, M. Plonka, J. Ciejka, K. Szczubialka, M. Nowakowska, B. Lorkowska, T. Korbut, R.
    • Lach, J. Med. Chem. 2011, 54, 6586-6596. (j) A. C. Rodrigo, A. Barnard, J. Cooper, D. K. Smith, Angew. Chem. Int. Ed. 2011, 50, 4675-4679. (k) S. M. Bromfield, P. Posocco, C. W. Chan, M. Calderon, S. E. Guimond, J.
    • E. Turnbull, S. Pricl, D. K. Smith, Chem. Sci. 2014, DOI 10.1039/C4SC00298A S. M. Bromfield, E. Wilde, D. K. Smith, Chem. Soc. Rev. 2013, 42, 9184- 9195.
    • (a) S. Bai, C. Thomas, F. Ahsan, J. Pharm. Sci. 2007, 96, 2090-2106. (b) B. Klajnert, M. Cangiotti, S. Calici, M. Ionov, J. P. Majoral, A.-M.
    • 2009, 33, 1087-1093. (c) X. Feng, Y. Cheng, K. Yang, J. Zhang, Q. Wu, T. Xu, J. Phys. Chem. B 2010, 114, 11017-11026.
    • S. M. Bromfield, P. Posocco, M. Fermeglia, S. Pricl, J. RodríguezLópez,D. K. Smith, Chem. Comunn. 2013, 49, 4830-4832.
    • Commun. 2006, 2362 2364 (b) X. Liu, P. Rocchi, F. Qu, S. Zheng, Z.
    • Liang, M. Gleave, J. Iovanna, L. Peng, ChemMedChem 2009, 4, 1302- 1310. (c) X. Liu, J. Wu, M. Yammine, J. Zhou, P. Posocco, S. Viel, C. Liu, F. Ziarelli, M. Fermeglia, S. Pricl, G. Victorero, C. Nguyen, P. Erbacher, J.-P. Behr, L. Peng, Bioconjugate Chem. 2011, 22, 2461-2473. (d) P.
    • Rocchi, S. Pricl, L. Peng, Mol. Pharm. 2013, 10, 3262-3273.
    • (a) H. Yu, Y. Nie, C. Dohmen, Y. Li, E. Wagner, Biomacromolecules 2011, 12, 2039-2047. (b) W. Cao, L. Zhu, Macromolecules 2011, 44, 1500-1512. (c) J. Deng, Y. Zhou, B. Xu, K. Mai, Y. Deng, L.-M. Zhang, Biomacromolecules 2011, 12, 642-649. (d) J. Deng, N. Li, K. Ma, C.
    • Yang, L. Yan, L.-M. Zhang, J. Mater. Chem. 2011, 21, 5273-5281. (e) T.
    • Colloid Interface Sci. 2012, 377, 469-475. (f) B. Liang, J. J. Deng, F.
    • Yuan, N. Yang, W. Li, J. T. Yin, S. X. Pu, L. C. Sie, C. Gao, L. M. Zhang, Carbohydrate Polym. 2013, 94, 185-192.
    • Zhang, L. Peng, Org. Biomol. Chem. 2006, 4, 581-585. (b) T. Yu, X. Liu, A.-L. Bolcato-Bellemin, Y. Wang, C. Liu, P. Erbacher, F. Qu, P. Rocchi, J.-P. Behr, L. Peng, Angew. Chem. Int. Ed. 2012, 51, 8478-8484. (c) K.
    • Kono, R. Ikeda, K. Tsukamoto, E. Yuba, C. Kojima, A. Harada, Bioconjugate Chem. 2012, 23, 871-879. (d) S. Iwashita, Y. Hiramatsu, T.
    • Igarashi, J. Biomater. Appl. 2012, 27, 445-456. (e) Y. Zhang, J. Chen, C.
    • Xiao, M. Li, H. Tian, X. Chen, Biomacromolecules 2013, 14, 4289-4300.
    • - - - Biomacromolecules 2011, 12, 1205-1213.
    • Chem. 2012, 19, 4929-4941. (c) M., D. Pérez-Carrió Pharm.
    • Res. 2013, 30, 2584-2595.
    • G. M. Pavan, A. Danani, Phys. Chem. Chem. Phys. 2010, 12, 13914- 13917.
    • (a) P. K. Maiti, T. Cagin, S.-T. Lin, W. A. Goddard III, Macromolecules 2005, 38, 979-991; (b) Y. Liu, V. S. Bryantsev, M. S. Diallo, W. A.
    • Goddard III, J. Am. Chem. Soc. 2009, 131, 2798-2799.
    • G. M. Pavan, A. Danani, S. Pricl, D. K. Smith, J. Am. Chem. Soc. 2009, 131, 9686-9694.
    • (a) M. O. Steinhauser, Computational Mutiscale Modeling of Fluids and Solids Theory and Applications, Springer-Verlag, Heidelberg, 2008. (b) P. Posocco, S. Pricl, S. P. Jones, A. Barnard, D. K. Smith, Chem. Sci.
    • 2010, 1, 393-404. (c) A. Barnard, P. Posocco, S. Pricl, M. Calderon, R.
    • Chem. Soc. 2011, 133, 20288-20300; (d) S. P. Jones, N. P. Gabrielson, C.-H. Wong, H.-F. Chow, D. W. Pack, P. Posocco, M. Fermeglia, S. Pricl, D. K. Smith, Mol. Pharm. 2011, 8, 416-429. (e) P. Posocco, E. Laurini, V.
    • Dal Col, D. Marson, L. Peng, D. K. Smith, B. Klajnert, M. Bryszewska, A.- M. Caminade, J.-P. Majoral, M. Fermeglia, K. Karatasos, S. Pricl In Dendrimers in Biomedical Applications, B. Klajnert, L. Peng, V. Ceña, Eds., RSC Publishing: Cambridge 2013, pp 148-166; (f) P. Posocco, E.
    • Med. Chem. 2012, 19, 5062-5087; (g) D. J. Welsh, P. Posocco, S. Pricl, D. K. Smith, Org. Biomol. Chem. 2013, 11, 3177-3186 (h) A. Barnard, P.
    • Posocco, M. Fermeglia, A. Tschiche, M. Calderon, S. Pricl, D. K. Smith, Org. Biomol. Chem. 2014, 12, 446-455.
    • 20. For the software see: (a) D. A. Case, T. A. Darden, T. E. Cheatham III, C.
    • Gusarov, A. Kovalenko and P. A. Kollman AMBER 11, 2010, University of California, San Francisco, CA, USA. For key papers: (b) W. L.
    • Chem. Phys. 1983, 79, 926-935. (c) A. Toukmaji, C. Sagui, J. Board, T.
    • Darden, J. Chem. Phys. 2000, 113, 10913-10927. (d) J. Wang, R. M.
    • Wolf, J. Caldwell, P. A. Kollman, D. A. Case, J. Comput. Chem. 2004, 25, 1157-1174. (e) J. Wang, P. A. Kollman, D. A. Case, J. Mol. Graph. Model.
    • 2006, 25, 247-260. (f) S. P. Jones, G. M. Pavan, A. Danani, S. Pricl, F. K.
    • Smith, Chem. Eur. J. 2010, 16, 4519-4532. (g) G. M. Pavan, P. Posocco, A. Tagliabue, M. Maly, A. Malek, A. Danani, E. Ragg, C. V. Catapano, S.
    • Pricl, Chem. Eur. J. 2010, 16, 7781-7795.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article