Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Clark, Dan
Languages: English
Types: Doctoral thesis
Currently, UK forensic service providers (FSPs) tend to employ three geographically-broad databases when estimating profile frequencies based on a standard SGM Plus® DNA profile. These estimations will typically include correction factors to take into account issues such as substructuring of populations and sampling inefficiencies. It has been shown previously that regional genetic variation within the UK ‘Caucasian’ population is negligible but consideration has to be made for profiles which may originate from an individual of a more genetically isolated population.\ud \ud Samples were collected from Indian, Pakistani and UK (white British) donors; as well as Kalash individuals, a small population from the Khyber Pakhtunkhwa region in the North West of Pakistan. These were profiled using the SGM Plus® and Identifiler® kits and databases for each population were compiled.\ud \ud The greatest pairwise FST was seen between the Kalash and Indian population at 2.9 %. Allele frequency data were collected for each population and each sample’s profile frequency was estimated against all other databases to see whether samples reported a more conservative profile frequency (higher match probability) in their cognate database or in that of another population. A combined database comprising the Indian, Pakistani and previously published Bangladeshi data was also formed and used to calculate the level of correction required to make all samples of a population report a more conservative profile frequency in this combined database as opposed to their cognates. At the standard FST correction of 3 % – the minimum correction used by some FSPs, 94 % of the UK samples reported a more conservative profile frequency in the South Asian database; the lowest proportion that did so from all four populations. The Kalash dataset required the highest correction factor at FST = 12 % to make 100 % of samples report more conservative match probabilities when measured against the combined database.\ud \ud It was established that the current levels of correction applied to profile frequency calculations were more than sufficient; with random match probabilities remaining in the order of less than one in one billion for all samples in all databases with a correction of FST = 5 %. Although significant pairwise FST differences were observed as well as significant differentiation between populations across all SGM Plus® loci, no evidence of substructuring was detected using a program which employs a Bayesian probabilistic clustering approach, STRUCTURE, likely due to an insufficient number of samples and number of loci tested. \ud \ud Marked differences were seen in allele frequencies of the Kalash population, which also exhibited the highest affiliation to their cognate database, at least 80 %, with or without correction. AMOVA analysis also confirmed the greatest variance between groups was seen when the Kalash were kept as a separate entity from the other South Asian populations.\ud \ud Although current UK practice for applying FST correction prior to estimating STR match probabilities seems generous, there will be occasions when an estimation may appear less conservative when based on a broad database. Conversely, in this study, the one in one billion match probability ceiling threshold was not exceeded for any sample being compared to all databases. Therefore, although consideration should be given to a suspect’s reference population prior to frequency estimation, the current correction factors applied should be sufficient in the vast majority of cases. In instances where partial profiles are obtained, this caused little effect on the estimation of geographic origin, compared to full profiles, with the populations used in this study.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Bauchet, M., McEvoy, B., Pearson, L. N., Quillen, E. E., Sarkisian, T., Hovhannesyan, K., Deka, R., Bradley, D. G., & Shriver, M. D., (2007) 'Measuring European population stratification with Microarray Genotype Data'. Am. J. Hum. Genet., 80, (5), p.948-956 Baye, T. M., Tiwari, H. K., Allison, D. B., & Go, R. C. (2009) 'Database mining for selection of SNP markers useful in admixture mapping'. BioData Min., 2, (1). p.1-8 Behar, D. M., Villems, R., Soodyall, H., Blue-Smith, J., Pereira, L., Metspalu, E., Scozzari, R., Makkan, H., Tzur, S., Comas, D., Bertranpetit, J., Quintana-Murci, L., Tyler-Smith, C., Spencer Wells, R., & Rosset, S., (2008) 'The Dawn of Human Matrilineal Diversity'. Am. J. Hum. Genet., 82, (5), p.1130-1140
    • Bender, K., Schneider, P. M., & Rittner, C. (2000) 'Application of mtDNA sequence analysis in forensic casework for the identification of human remains'. Forensic Sci. Int., 113, (1-3), p.103-107
    • Bhopal, R. & Donaldson, L. (1998) 'White, European, Western, Caucasian, or what? Inappropriate labelling in research on race, ethnicity, and health'. Am. J. Public Health, 88, p.1303-1307
    • Binda, S., Borer, U. V., Gehrig, C., Hochmeister, M., & Budowle, B. (2000) 'Swiss Caucasian population data for the STR loci D2S1338 and D19S433 using the AmpFℓSTR SGM plus PCR amplification kit'. Forensic Sci. Int., 108, (2), p.117-120 Botstein, D., White, R. L., Skolnick, M., & Davis, R. W. (1980) 'Construction of a genetic linkage map in man using restriction fragment length polymorphisms'. Am. J. Hum. Genet., 32, (3), p.314-331
    • Bowcock, A. M., Ruiz-Linares, A., Tomfohrde, J., Minch, E., Kidd, J. R., & CavalliSforza, L. L. (1994) 'High resolution of human evolutionary trees with polymorphic microsatellites'. Nature, 368, (6470), p.455-457
    • Brenner, C. H. (1998) 'Difficulties in the estimation of ethnic affiliation'. Am. J. Hum. Genet., 62, (6), p.1558-1560
    • Briggs, A. W., Good, J. M., Green, R. E., Krause, J., Maricic, T., Stenzel, U., LaluezaFox, C., Rudan, P., Brajković, D., Kućan, Ž., Gušic, I., Schmitz, R., Doronichev, V. B., Golovanova, L. V., de la Rasilla, M., Fortea, J., Rosas, A., & Pääbo, S., (2009) 'Targeted retrieval and analysis of five Neandertal mtDNA genomes'. Science, 325, p.318-321
    • Brinkmann, B., Klintschar, M., Neuhuber, F., Hühne, J., & Rolf, B., (1998) 'Mutation Rate in Human Microsatellites: Influence of the Structure and Length of the Tandem Repeat'. Am. J. Hum. Genet., 62, p.1408-1415
    • Buckleton, J. S., Curran, J. M., & Walsh, S. J. (2006) 'How reliable is the subpopulation model in DNA testimony?' Forensic Sci. Int., 157, p.144-148 Budowle, B., Allard, M. W., Wilson, M. R., & Chakraborty, R. (2003) 'Forensics and Mitochondrial DNA: Applications, Debates, and Foundations'. Annu. Rev. Genomics Hum. Genet. 4, p.119-141
    • Budowle, B., Wilson, M. R., DiZinno, J. A., Stauffer, C., Fasano, M. A., Holland, M. M., & Monson, K. L. (1999) 'Mitochondrial DNA regions HVSI and HVSII population data'. Forensic Sci. Int., 103, (1), p.23-35
    • Butler, J. 2001, Forensic DNA Typing Academic Press, London. Butler, J. (2006) 'Genetics and Genomics of Core Short Tandem Repeat Loci Used in Human Identity Testing'. J. For. Sci., 51, (2), p.253-265
    • Butler, J., Shen, Y., & McCord, B. R. (2003) 'The development of reduced size STR amplicons as tools for analysis of degraded DNA'. J. For. Sci., 48, (5), p.1054-1064 Cadenas, A. M., Regueiro, M., Gayden, T., Singh, N., Zhivotovsky, L. A., Underhill, P. A., & Herrera, R. J. (2007) 'Male amelogenin dropouts: phylogenetic context, origins and implications'. Forensic Sci. Int., 166, p.155-163 Cann, H.M., de Toma, C., Cazes, L., Legrand, M-F., Morel, V., Piouffre, L., Bodmer, J., Bodmer, W. F., Bonne-Tamir, B., Cambon-Thomsen, A., Chen, Z., Chu, J., Carcassi, C., Contu, L., Du, R., Excoffier, L., Ferrara, G. B., Friedlaender, J. S., Groot, H., Gurwitz, D., Jenkins, T., Herrera, R. J., Huang, X., Kidd, J., Kidd, K. K., Langaney, A., Lin, A. A., Qasim Mehdi, S., Parham, P., Piazza, A., Pia Pistillo, M., Qian, Y., Shu, Q., Xu, J., Zhu, S., Weber, J. L., Greely, H. T., Feldman, M. W., Thomas, G., Dausset, J., & Cavalli-Sforza, L. L. (2002) 'A human genome diversity cell line panel'. Science, 296, (5566), p.261-262
    • Cann, R. L., Stoneking, M., & Wilson, A. C. (1987) 'Mitochondrial DNA and human evolution'. Nature, 325, (6099), p.31-36
    • Cavalli-Sforza, L. L., Menozzi, P., & Piazza, A. 1994, The History and Geography of Human Genes Princeton University Press, Princeton.
    • Chakraborty, R. (1992) 'Sample size requirements for addressing the population genetic issues of forensic use of DNA typing'. Hum. Biol., 64, (2), p.141-159 Chakraborty, R., Shaw, M., & Schull, W. J. (1974) 'Exclusion of paternity: the current state of the art'. Am. J. Hum. Genet., 26, (4), p.477-488
    • Clark, D., Hadi, S., Iyengar, A., Smith, J., Garg, V & Goodwin, W. (2009) 'STR data for the AmpFℓSTR® SGM Plus® loci from two South Asian populations', Legal Med., 11, (2), p.97-100
    • Coble, M. D. & Butler, J. M. (2005) 'Characterization of new MiniSTR Loci aid analysis of degraded DNA'. J. Forensic. Sci., 50, (1), p.43-53
    • Collins, P. J., Hennessy, L. K., Leibelt, C. S., Roby, R. K., Reeder, D. J., & Foxall, P. A., (2004) 'Developmental validation of a single-tube amplification of the 13 CODIS STR loci, D2S1338, D19S433, and Amelogenin: The AmpFℓSTR® Identifiler® PCR amplification kit', J. Forensic Sci., 49, (6), p.1-13
    • Cotton, E. A., Allsop, R. F., Guest, J. L., Frazier, R. R. E., Koumi, P., Callow, I. P., Seager, A., & Sparkes, R. L., (2000) 'Validation of the AmpFℓSTR® SGM Plus® system for use in forensic casework'. Forensic Sci. Int., 112, p.151-161
    • Curran, J. M., Buckleton, J. S. (2007) 'The appropriate use of subpopulation corrections for differences in endogamous communities'. Forensic Sci. Int., 168, p.106-111
    • Curran, J. M., Buckleton, J. S., Triggs, C. M., (2003) 'What is the magnitude of the subpopulation effect?' Forensic Sci. Int., 135, p.1-8
    • Deshpande, O., Batzoglou, S., Feldman, M. W., & Cavalli-Sforza, L. L. (2009) 'A serial founder effect model for human settlement out of Africa'. Proc. R. Soc. B., 276, p.291-300
    • Devlin, B., Risch, N., & Roeder, K. (1993) 'Statistical evaluation of DNA fingerprinting: a critique of the NRC's report'. Science, 259, (5096), p.748-749
    • Divne, A. M. & Allen, M. (2005) 'A DNA microarray system for forensic SNP analysis'. Forensic Sci. Int., 154, (2-3), p.111-121
    • Dixon, L. A., Dobbins, A. E., Pulker, H. K., Butler, J. M., Vallone, P. M., Coble, M. D., Parson, W., Berger, B., Grubwieser, P., Mogensen, H. S., Morling, N., Nielsen, K., Sanchez, J. J., Petkovski, E., Carracedo, A., Sanchez-Diz, P., Ramos-Luis, E., Briōn, M., Irwin, J. A., Just, R. S., Loreille, O., Parsons, T. J., Syndercombe-Court, D., Schmitter, H., Stradmann-Bellinghausen, B., Bender, K., & Gill, P. (2006) 'Analysis of artificially degraded DNA using STRs and SNPs--results of a collaborative European (EDNAP) exercise'. Forensic Sci. Int., 164, (1), p.33-44
    • Dyson, S. M. (1998) '"Race", ethnicity and haemoglobin disorders'. Soc. Sci. Med., 47, (1), p.121-131
    • Edwards, A. W. F. (2003) 'Human genetic diversity: Lewontin's fallacy'. BioEssays, 25, p.798-801
    • Edwards, A., Civitello, A., Hammond, H. A. & Caskey, C. T. (1991) 'DNA Typing and Genetic Mapping with Trimeric and Tetrameric Tandem Repeats'. Am. J. Hum. Genet., 49, p.746-756
    • Edwards, A., Hammond, H. A., Jin, L., Caskey, C. T., & Chakraborty, R. (1992) 'Genetic variation at five trimeric and tetrameric tandem repeat loci in four human population groups'. Genomics, 12, (2), p.241-253
    • El Mouzan, M. I., Al Salloum, A. A., Al Herbish, A. S., Qurachi, M. M., & Al Omar, A. A. (2010) 'Consanguinity and major genetic disorders in Saudi children: a communitybased cross-sectional study'. Ann. Saudi Med., 28, (3), p.169-173 Evett, I. W., Gill, P. D., Scrange, J. K., & Weir, B. S. (1996a) 'Establishing the robustness of short-tandem-repeat statistics for forensic applications'. Am. J. Hum. Genet., 58, (2), p.398-407
    • Evett, I. W., Lambert, J. A., Buckleton, J. S., & Weir, B. S. (1996b) 'Statistical analysis of a large file of data from STR profiles of British Caucasians to support forensic casework', Int. J. Legal Med., 109, p.173-177
    • Excoffier, L. (2002) 'Human demographic history: refining the recent African origin model'. Curr. Opin. Genet. Dev., 12, p.675-682
    • Excoffier, L., Laval, G., & Schneider, S. (2005) 'Arlequin ver. 3.1: An integrated software package for population genetics data analysis'. Evol. Bioinform. Online, 1, p.47-50
    • Excoffier, L., Smouse, P. E., & Quattro, J. M. (1992) 'Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data'. Genetics, 131, (2), p.479-491
    • Firasat, S., Khaliq, S., Mohyuddin, A., Papaioannou, M., Tyler-Smith, C., Underhill, P. A., & Ayub, Q. (2007) 'Y-Chromosomal evidence for a limited Greek contribution to the Pathan population of Pakistan', Eur. J. Hum. Genet., 15, p.121-126
    • Fitzpatrick, B. M. (2009) 'Power and sample size for nested analysis of molecular variance'. Mol. Ecol., 18, p.3961-3966
    • Foreman, L. A., Lambert, J. A., & Evett, I. W. (1998) 'Regional genetic variation in Caucasians'. Forensic Sci. Int., 95, (1), p.27-37
    • Foreman, L. A., Smith, A. F. M., & Evett, I. W. (1997) 'A Bayesian approach to validating STR multiplex databases for use in forensic casework', Int. J. Legal Med., 110, p.244-250
    • Foster, M. W. & Sharp, R. R. (2002) 'Race, ethnicity, and genomics: social classifications as proxies of biological heterogeneity'. Genome Res., 12, (6), p.844- 850
    • Frégeau, C. J., & Fourney, R. M. (1993) 'DNA typing with fluorescently tagged short tandem repeats: a sensitive and accurate approach to human identification'. Biotechniques, 15, (1), p.100-119
    • Frudakis, T., Venkateswarlu, K., Thomas, M. J., Gaskin, Z., Ginjupalli, S., Gunturi, S., Ponnuswamy, V., Natarajan, S., & Nachimuthu, P. K. (2003) 'A classifier for the SNPbased inference of ancestry'. J. Forensic Sci., 48, (4), p.771-782
    • Gaines, M. L., Wojtkiewicz, P. W., Valentine, J. A., & Brown, C. L. (2002) 'Reduced volume PCR amplification reactions using the AmpFℓSTR Profiler Plus kit'. J. Forensic Sci., 47, (6), p.1224-1237
    • Gehrig, C., Hochmeister, M., Borer, U. V., Dirnhofer, R., & Budowle, B. (1999) 'Swiss Caucasian population data for 13 STR loci using AmpFℓSTR profiler plus and cofiler PCR amplification kits'. J. Forensic Sci., 44, (5), p.1035-1038
    • Gill, P. (2001) 'An assessment of the utility of single nucleotide polymorphisms (SNPs) for forensic purposes'. Int. J. Leg. Med., 114, p.204-210
    • Gill, P., Foreman, L., Buckleton, J. S., Triggs, C. M., & Allen, H. (2003) 'A comparison of adjustment methods to test the robustness of an STR DNA database comprised of 24 European populations'. Forensic Sci. Int., 131, (2-3), p.184-196
    • Gill, P., Sullivan, K., & Werrett, D. J. (1989) 'The analysis of hypervariable DNA profiles: problems associated with the objective determination of the probability of a match'. Hum. Genet., 85, p.75-79
    • Golenberg, E. M., Bickel, A. & Weihs, P. (1996) 'Effect of highly fragmented DNA on PCR'. Nucleic Acids Res., 24, (24), p.5026-5033 Jeffreys, A. J., Wilson, V., & Thein, S. L. (1985) 'Individual-specific 'fingerprints' of human DNA'. Nature, 316, (6023), p.76-79
    • Jobling, M. A. & Gill, P. (2004) 'Encoded Evidence: DNA in Forensic Analysis'. Nature, 5, p.739-751
    • Jobling, M. A. & Tyler-Smith, C. (1995) ' Fathers and sons: the Y chromosome and human evolution'. Trends Genet., 11, (11), p.449-456
    • Jones, D. A. (1972) 'Blood samples: probability of discrimination'. J. Forensic Sci. Soc., 12, (2), p.355-359
    • Junge, A., Verheesen, M., & Madea, B. (2001) 'Genetic variation and population genetic data of the short tandem repeat locus D8S320'. Forensic Sci. Int., 119, (1), p.11-16
    • Kaessman, H., Wiebe, V., Weiss, G., & Pääbo, S. (2001) 'Great ape DNA sequences reveal a reduced diversity and an expansion in humans'. Nature Genetics, 27, p.155- 156
    • Kashyap, V. K., Guha, S., Sitalaximi, T., Bindu, G. H., Hasnain, S. E., & Trivedi, R. (2006a) 'Genetic structure of Indian populations based on fifteen autosomal microsatellite loci'. BMC. Genet., 7, p.28
    • Kashyap, V. K., Sahoo, S., Sitalaximi, T., & Trivedi, R. (2006b) 'Deletions in the Yderived amelogenin gene fragment in the Indian population'. BMC. Med. Genet., 7, (37), doi:10.1186/1471-2350-7-37
    • Kayser, M. & de Kniff, P. (2011) 'Improving human forensics through advances in genetics, genomics and molecular biology'. Nat. Genet., 12, p.179-192
    • Kayser, M. & Schneider, P. M. (2009) 'DNA-based prediction of human externally visible characteristics in forensics: Motivations, scientific challenges, and ethical considerations'. Forensic Sci. Int. - Genetics, 3, p.154-161
    • Kelkar, Y. D., Tyekucheva, S., Chiaromonte, F., & Makova, K. D. (2008) 'The genome-wide determinants of human and chimpanzee microsatellite evolution'. Genome Res., 18, (1), p.30-38
    • Mansoor, A., Mazhar, K., Khaliq, S., Hameed, A., Rehman, S., Siddiqi, S., Papaioannou, M., Cavalli-Sforza, L. L., Qasim Mehdi, S., & Ayub, Q. (2004) 'Investigation of the Greek ancestry of populations from Northern Pakistan'. Hum. Genet., 114, p.484-490
    • Marian, C., Anghel, A., Bel, S. M., Ferencz, B. K., Ursoniu, S., Dressler, M., Popescu, O., & Budowle, B. (2007) 'STR data for the 15 AmpFℓSTR identifiler loci in the Western Romanian population'. Forensic Sci. Int., 170, (1), p.73-75 Risch, N., Burchard, E., Ziv, E., & Tang, H. (2002) 'Categorization of humans in biomedical research: genes, race and disease'. Genome Biol., 3, (7), p.comment2007 Ropers, H H., (2008), 'Genetics of intellectual disability', Curr. Opin. Genet. Dev, 18:241-250
    • Rosenberg, N.A., Burke, T., Elo, K., Feldman, M. W., Friedlin, P., Groenen, M. A. M., Hillel, J., Mäki-Tanila, A., Tixier-Boichard, M., Vignal, A., Wimmers, K., & Weigend, S. (2001) 'Empirical evaluation of genetic clustering methods using multilocus genotypes from 20 chicken breeds'. Genetics, 159, p.699-713
    • Rosenberg, N. A., Li, L. M., Ward, R., & Pritchard, J. K. (2003) 'Informativeness of genetic markers for inference of ancestry'. Am. J. Hum. Genet., 73, (6), p.1402-1422 Rosenberg, N. A., Mahajan, S., Ramachandran, S., Zhao, C., Pritchard, J. K., (2005) 'Clines, clusters, and the effect of study design on the inference of human population structure'. PLoS Genet., 1(6): e70
    • Rosenberg, N. A., Pritchard, J. K., Weber J. L., Cann, H. M., Kidd, K. K., Zhivotovsky L. A., Feldman, M. W., (2002) 'Genetic structure of human populations'. Science, 298, p.2381-2385
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article