Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Arozarena, Imanol; Goicoechea, I.; Erice, O.; Ferguson, J.; Margison, G.P.; Wellbrock, C. (2014)
Publisher: American Association for Cancer Research
Languages: English
Types: Article
Subjects: RM

Classified by OpenAIRE into

mesheuropmc: neoplasms
BACKGROUND:\ud \ud The importance of the genetic background of cancer cells for the individual susceptibility to cancer treatments is increasingly apparent. In melanoma, the existence of a BRAF mutation is a main predictor for successful BRAF-targeted therapy. However, despite initial successes with these therapies, patients relapse within a year and have to move on to other therapies. Moreover, patients harbouring a wild type BRAF gene (including 25% with NRAS mutations) still require alternative treatment such as chemotherapy. Multiple genetic parameters have been associated with response to chemotherapy, but despite their high frequency in melanoma nothing is known about the impact of BRAF or NRAS mutations on the response to chemotherapeutic agents.\ud METHODS:\ud \ud Using cell proliferation and DNA methylation assays, FACS analysis and quantitative-RT-PCR we have characterised the response of a panel of NRAS and BRAF mutant melanoma cell lines to various chemotherapy drugs, amongst them dacarbazine (DTIC) and temozolomide (TMZ) and DNA synthesis inhibitors.\ud RESULTS:\ud \ud Although both, DTIC and TMZ act as alkylating agents through the same intermediate, NRAS and BRAF mutant cells responded differentially only to DTIC. Further analysis revealed that the growth-inhibitory effects mediated by DTIC were rather due to interference with nucleotide salvaging, and that NRAS mutant melanoma cells exhibit higher activity of the nucleotide synthesis enzymes IMPDH and TK1. Importantly, the enhanced ability of RAS mutant cells to use nucleotide salvaging resulted in resistance to DHFR inhibitors.\ud CONCLUSION:\ud \ud In summary, our data suggest that the genetic background in melanoma cells influences the response to inhibitors blocking de novo DNA synthesis, and that defining the RAS mutation status could be used to stratify patients for the use of antifolate drugs.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W, Davis N, Dicks E, Ewing R, Floyd Y, Gray K, Hall S, Hawes R, Hughes J, Kosmidou V, Menzies A, Mould C, Parker A, Stevens C, Watt S, Hooper S, Wilson R, Jayatilake H, Gusterson BA, Cooper C, Shipley J, et al: Mutations of the BRAF gene in human cancer. Nature 2002, 417:949-954.
    • 2. Wellbrock C, Hurlstone A: BRAF as therapeutic target in melanoma. Biochem Pharmacol 2008, 80:561-567.
    • 3. Arozarena I, Sanchez-Laorden B, Packer L, Hidalgo-Carcedo C, Hayward R, Viros A, Sahai E, Marais R: Oncogenic BRAF induces melanoma cell invasion by downregulating the cGMP-specific phosphodiesterase PDE5A. Cancer Cell 2011, 19:45-57.
    • 4. Belden S, Flaherty KT: MEK and RAF inhibitors for BRAF-mutated cancers. Expert Rev Mol Med 2012, 14:e17.
    • 5. Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J, Dummer R, Garbe C, Testori A, Maio M, Hogg D, Lorigan P, Lebbe C, Jouary T, Schadendorf D, Ribas A, O'Day SJ, Sosman JA, Kirkwood JM, Eggermont AM, Dreno B, Nolop K, Li J, Nelson B, Hou J, Lee RJ, Flaherty KT, McArthur GA, BRIM-3 Study Group: Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 2011, 364:2507-2516.
    • 6. Flaherty KT, Infante JR, Daud A, Gonzalez R, Kefford RF, Sosman J, Hamid O, Schuchter L, Cebon J, Ibrahim N, Kudchadkar R, Burris HA 3rd, Falchook G, Algazi A, Lewis K, Long GV, Puzanov I, Lebowitz P, Singh A, Little S, Sun P, Allred A, Ouellet D, Kim KB, Patel K, Weber J: Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. N Engl J Med 2012, 367:1694-1703.
    • 7. Sosman JA, Kim KB, Schuchter L, Gonzalez R, Pavlick AC, Weber JS, McArthur GA, Hutson TE, Moschos SJ, Flaherty KT, Hersey P, Kefford R, Lawrence D, Puzanov I, Lewis KD, Amaravadi RK, Chmielowski B, Lawrence HJ, Shyr Y, Ye F, Li J, Nolop KB, Lee RJ, Joe AK, Ribas A: Survival in BRAF V600-mutant advanced melanoma treated with vemurafenib. N Engl J Med 2012, 366:707-714.
    • 8. Wagle N, Emery C, Berger MF, Davis MJ, Sawyer A, Pochanard P, Kehoe SM, Johannessen CM, Macconaill LE, Hahn WC, Meyerson M, Garraway LA: Dissecting therapeutic resistance to RAF inhibition in melanoma by tumor genomic profiling. J Clin Oncol 2011, 29:3085-3096.
    • 9. Joseph EW, Pratilas CA, Poulikakos PI, Tadi M, Wang W, Taylor BS, Halilovic E, Persaud Y, Xing F, Viale A, Tsai J, Chapman PB, Bollag G, Solit DB, Rosen N: The RAF inhibitor PLX4032 inhibits ERK signaling and tumor cell proliferation in a V600E BRAF-selective manner. Proc Natl Acad Sci U S A 2010, 107:14903-14908.
    • 10. Solit DB, Garraway LA, Pratilas CA, Sawai A, Getz G, Basso A, Ye Q, Lobo JM, She Y, Osman I, Golub TR, Sebolt-Leopold J, Sellers WR, Rosen N: BRAF mutation predicts sensitivity to MEK inhibition. Nature 2006, 439:358-362.
    • 11. Heidorn SJ, Milagre C, Whittaker S, Nourry A, Niculescu-Duvas I, Dhomen N, Hussain J, Reis-Filho JS, Springer CJ, Pritchard C, Marais R: Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF. Cell 2010, 140:209-221.
    • 12. Mouawad R, Sebert M, Michels J, Bloch J, Spano JP, Khayat D: Treatment for metastatic malignant melanoma: old drugs and new strategies. Crit Rev Oncol Hematol 2010, 74:27-39.
    • 13. Marchesi F, Turriziani M, Tortorelli G, Avvisati G, Torino F, De Vecchis L: Triazene compounds: mechanism of action and related DNA repair systems. Pharmacol Res 2007, 56:275-287.
    • 14. Middleton MR, Grob JJ, Aaronson N, Fierlbeck G, Tilgen W, Seiter S, Gore M, Aamdal S, Cebon J, Coates A, Dreno B, Henz M, Schadendorf D, Kapp A, Weiss J, Fraass U, Statkevich P, Muller M, Thatcher N: Randomized phase III study of temozolomide versus dacarbazine in the treatment of patients with advanced metastatic malignant melanoma. J Clin Oncol 2000, 18:158-166.
    • 15. Friedman HS, Kerby T, Calvert H: Temozolomide and treatment of malignant glioma. Clin Cancer Res 2000, 6:2585-2597.
    • 16. Hauschild A, Grob JJ, Demidov LV, Jouary T, Gutzmer R, Millward M, Rutkowski P, Blank CU, Miller WH Jr, Kaempgen E, Martín-Algarra S, Karaszewska B, Mauch C, Chiarion-Sileni V, Martin AM, Swann S, Haney P, Mirakhur B, Guckert ME, Goodman V, Chapman PB: Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet 2012, 380:358-365.
    • 17. Meckbach D, Keim U, Richter S, Leiter U, Eigentler TK, Bauer J, Pflugfelder A, Buttner P, Garbe C, Weide B: BRAF-V600 mutations have no prognostic impact in stage IV melanoma patients treated with monochemotherapy. PLoS One 2014, 9:e89218.
    • 18. Chen KG, Valencia JC, Gillet JP, Hearing VJ, Gottesman MM: Involvement of ABC transporters in melanogenesis and the development of multidrug resistance of melanoma. Pigment Cell Melanoma Res 2009, 22:740-749.
    • 19. Rockmann H, Schadendorf D: Drug resistance in human melanoma: mechanisms and therapeutic opportunities. Onkologie 2003, 26:581-587.
    • 20. Sarasin A, Dessen P: DNA repair pathways and human metastatic malignant melanoma. Curr Mol Med 2010, 10:413-418.
    • 21. Verbeek B, Southgate TD, Gilham DE, Margison GP: O6-Methylguanine-DNA methyltransferase inactivation and chemotherapy. Br Med Bull 2008, 85:17-33.
    • 22. Bennett LL Jr, Smithers D, Rose LM, Adamson DJ, Shaddix SC, Thomas HJ: Metabolism and metabolic effects of 2-azahypoxanthine and 2- azaadenosine. Biochem Pharmacol 1985, 34:1293-1304.
    • 23. Szybalski W: Use of the HPRT gene and the HAT selection technique in DNA-mediated transformation of mammalian cells: first steps toward developing hybridoma techniques and gene therapy. Bioessays 1992, 14:495-500.
    • 24. Talantov D, Mazumder A, Yu JX, Briggs T, Jiang Y, Backus J, Atkins D, Wang Y: Novel genes associated with malignant melanoma but not benign melanocytic lesions. Clin Cancer Res 2005, 11:7234-7242.
    • 25. Garnett MJ, Edelman EJ, Heidorn SJ, Greenman CD, Dastur A, Lau KW, Greninger P, Thompson IR, Luo X, Soares J, Liu Q, Iorio F, Surdez D, Chen L, Milano RJ, Bignell GR, Tam AT, Davies H, Stevenson JA, Barthorpe S, Lutz SR, Kogera F, Lawrence K, McLaren-Douglas A, Mitropoulos X, Mironenko T, Thi H, Richardson L, Zhou W, Jewitt F, et al: Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature 2012, 483:570-575.
    • 26. Hoek KS, Schlegel NC, Brafford P, Sucker A, Ugurel S, Kumar R, Weber BL, Nathanson KL, Phillips DJ, Herlyn M, Schadendorf D, Dummer R: Metastatic potential of melanomas defined by specific gene expression profiles with no BRAF signature. Pigment Cell Res 2006, 19:290-302.
    • 27. Hauser IA, Renders L, Radeke HH, Sterzel RB, Goppelt-Struebe M: Mycophenolate mofetil inhibits rat and human mesangial cell proliferation by guanosine depletion. Nephrol Dial Transplant 1999, 14:58-63.
    • 28. Lev DC, Ruiz M, Mills L, McGary EC, Price JE, Bar-Eli M: Dacarbazine causes transcriptional up-regulation of interleukin 8 and vascular endothelial growth factor in melanoma cells: a possible escape mechanism from chemotherapy. Mol Cancer Ther 2003, 2:753-763.
    • 29. Wouters J, Stas M, Gremeaux L, Govaere O, Van den Broeck A, Maes H, Agostinis P, Roskams T, van den Oord JJ, Vankelecom H: The human melanoma side population displays molecular and functional characteristics of enriched chemoresistance and tumorigenesis. PLoS One 2013, 8:e76550.
    • 30. Metelmann HR, Von Hoff DD: In vitro activation of dacarbazine (DTIC) for a human tumor cloning system. Int J Cell Cloning 1983, 1:24-32.
    • 31. Shibuya H, Kato Y, Saito M, Isobe T, Tsuboi R, Koga M, Toyota H, Mizuguchi J: Induction of apoptosis and/or necrosis following exposure to antitumour agents in a melanoma cell line, probably through modulation of Bcl-2 family proteins. Melanoma Res 2003, 13:457-464.
    • 32. Lev DC, Onn A, Melinkova VO, Miller C, Stone V, Ruiz M, McGary EC, Ananthaswamy HN, Price JE, Bar-Eli M: Exposure of melanoma cells to dacarbazine results in enhanced tumor growth and metastasis in vivo. J Clin Oncol 2004, 22:2092-2100.
    • 33. Fiore D, Jackson AJ, Didolkar MS, Dandu VR: Simultaneous determination of dacarbazine, its photolytic degradation product, 2-azahypoxanthine, and the metabolite 5-aminoimidazole-4-carboxamide in plasma and urine by high-pressure liquid chromatography. Antimicrob Agents Chemother 1985, 27:977-979.
    • 34. Parsons PG, Smellie SG, Morrison LE, Hayward IP: Properties of human melanoma cells resistant to 5-(3′,3′-dimethyl-1-triazeno)imidazole-4-carboxamide and other methylating agents. Cancer Res 1982, 42:1454-1461.
    • 35. Saunders PP, DeChang W, Chao LY: Mechanisms of 5-(3,3-dimethyl-1-triazeno)imidazole-4-carboxamide (Dacarbazine) cytotoxicity toward Chinese hamster ovary cells in vitro are dictated by incubation conditions. Chem Biol Interact 1986, 58(3):319-331.
    • 36. Fellenberg J, Kunz P, Sahr H, Depeweg D: Overexpression of inosine 5′-monophosphate dehydrogenase type II mediates chemoresistance to human osteosarcoma cells. PLoS One 2010, 5:e12179.
    • 37. Penuelas S, Noe V, Ciudad CJ: Modulation of IMPDH2, survivin, topoisomerase I and vimentin increases sensitivity to methotrexate in HT29 human colon cancer cells. Febs J 2005, 272:696-710.
    • 38. Penuelas S, Noe V, Morales R, Ciudad CJ: Sensitization of human erythroleukemia K562 cells resistant to methotrexate by inhibiting IMPDH. Med Sci Monit 2005, 11:BR6-BR12.
    • 39. Aufderklamm S, Todenhofer T, Gakis G, Kruck S, Hennenlotter J, Stenzl A, Schwentner C: Thymidine kinase and cancer monitoring. Cancer Lett 2012, 316:6-10.
    • 40. Verma S, Quirt IC, Eisenhauer EA, Iscoe NA, Young VJ, Bodurtha AJ, Davidson J: A phase II study of weekly edatrexate (10-EDAM) in metastatic melanoma: a national cancer institute of Canada clinical trials group study. Ann Oncol 1993, 4:254-255.
    • 41. Leahy MF, Silver HK, Klimo P, Hall TC: Treatment of advanced malignant melanoma with high dose methotrexate and folinic acid rescue. Med Pediatr Oncol 1982, 10:151-156.
    • 42. Chen KG, Valencia JC, Lai B, Zhang G, Paterson JK, Rouzaud F, Berens W, Wincovitch SM, Garfield SH, Leapman RD, Hearing VJ, Gottesman MM: Melanosomal sequestration of cytotoxic drugs contributes to the intractability of malignant melanomas. Proc Natl Acad Sci U S A 2006, 103:9903-9907.
    • 43. Saez-Ayala M, Fernandez-Perez MP, Montenegro MF, Sanchez-del-Campo L, Chazarra S, Pinero-Madrona A, Cabezas-Herrera J, Rodriguez-Lopez JN: Melanoma coordinates general and cell-specific mechanisms to promote methotrexate resistance. Exp Cell Res 2012, 318:1146-1159.
    • 44. Sanchez-del-Campo L, Montenegro MF, Cabezas-Herrera J, Rodriguez-Lopez JN: The critical role of alpha-folate receptor in the resistance of melanoma to methotrexate. Pigment Cell Melanoma Res 2009, 22:588-600.
    • 45. Saez-Ayala M, Montenegro MF, Sanchez-Del-Campo L, Fernandez-Perez MP, Chazarra S, Freter R, Middleton M, Pinero-Madrona A, Cabezas-Herrera J, Goding CR, Rodriguez-Lopez JN: Directed phenotype switching as an effective antimelanoma strategy. Cancer Cell 2013, 24:105-119.
    • 46. Robien K, Boynton A, Ulrich CM: Pharmacogenetics of folate-related drug targets in cancer treatment. Pharmacogenomics 2005, 6:673-689.
    • 47. Watson AJ, Margison GP: O (6)-alkylguanine-DNA alkyltransferase assay. Methods Mol Med 1999, 28:167-178.
    • 48. Gerson SL, Trey JE, Miller K, Berger NA: Comparison of O6-alkylguanine-DNA alkyltransferase activity based on cellular DNA content in human, rat and mouse tissues. Carcinogenesis 1986, 7:745-749.
    • 49. Watson AJ, Margison GP: O6-alkylguanine-DNA alkyltransferase assay. Methods Mol Biol 2000, 152:49-61.
    • 50. Elder RH, Margison GP, Rafferty JA: Differential inactivation of mammalian and Escherichia coli O6-alkylguanine-DNA alkyltransferases by O6-benzylguanine. Biochem J 1994, 298(Pt 1):231-235.
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
  • No similar publications.

Share - Bookmark

Cite this article