Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Avitabile, Daniele; Desroches, Mathieu; Rodrigues, Serafim (2012)
Publisher: World Scientific
Languages: English
Types: Article
We present a numerical strategy to compute one-parameter families of isolas of equilibrium solutions in ODEs. Isolas are solution branches closed in parameter space. Numerical\ud continuation is required to compute one single isola since it contains at least one unstable segment. We show how to use pseudo-arclength predictor-corrector schemes in order to follow an entire isola in parameter space, as an individual object, by posing a suitable algebraic problem. We continue isolas of equilibria in a two-dimensional dynamical system, the so-called continuous stirred tank reactor model, and also in a three-dimensional model related to plasma physics. We then construct a toy model and follow a family of isolas past a fold and illustrate how to initiate the computation close to a formation center, using approximate ellipses in a model inspired by the Van der Pol equation. We also show how to introduce node adaptivity in the discretization of the isola, so as to concentrate nodes in region with higher curvature. We conclude by commenting on the extension of the proposed numerical strategy to the case of isolas of periodic orbits.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] Aronson, D. G., Chory G. R., Hall, G. R., & McGehee, R. P. [1982] \Bifurcations from an invariant circle for two-parameter families of maps onf the plane: a computer-assisted study", Commun. Math. Phys. 83, 303{354.
    • [2] Ascher, U. M. & Petzold, L. R. [1998] Computer Methods for Ordinary Di erential Equations and Di erential-Algebraic Equations (SIAM).
    • [3] Ball, R., Dewar, RL & Sugama, H. [2002] \Metamorphosis of plasma turbulence{shear- ow dynamics through a transcritical bifurcation", Phys. Rev. E 66, 66408.
    • [4] Beyn, W. J. & Thummler, V. [2007] \Phase conditions, symmetries and PDE continuation", in Numerical Continuation Methods for Dynamical Systems, eds. B. Krauskopf, H. M. Osinga & J. Galan-Vioque (Springer), pp. 301{330.
    • [5] Chan, T. [1983] \Numerical Bifurcation Analysis of Simple Dynamical Systems", Masters thesis (Concordia University).
    • [6] Champneys, A. R. & Sandstede, B. [2007] \Numerical computation of coherent structures", in Numerical Continuation Methods for Dynamical Systems, eds. B. Krauskopf, H. M. Osinga & J. Galan-Vioque, (Springer) pp. 331{358.
    • [7] Cousin-Rittemard, N. M. M. & Gruais, I. [2007] \Continuation methods and disjoint equilibria", Rev. Roumaine Math. Pures Appl. 52, 9{34.
    • [8] Dankowicz, H. & Schilder, F. [2011] \An extended continuation problem for bifurcation analysis in the presence of constraints", J. Comput. Nonlin. Dyn. 6, 031003.
    • [9] Dellwo, D. R., Keller, H. B., Matkowsky, B. J. & Reiss, E. L. [1982] \On the birth of isolas", SIAM J. Appl. Maths 42, 956{963.
    • [10] Dellwo, D. R. [1986] \A Constructive Theory of Isolas Supported by Parabolic Cusps, centers and Bifurcation Points", SIAM J. Appl. Maths 46, 740{764.
    • [11] Dhooge A., Govaerts W. & Kuznetsov Yu.A. [2003] \MatCont: A MATLAB package for numerical bifurcation analysis of ODEs", ACM TOMS 29, 141{164.
    • [12] Doedel, E. J. [1981] \AUTO: A program for the automatic bifurcation analysis of autonomous systems", Congr. Num. 30, 265{284, (Proc. of the 10th Manitoba Conf. on Num. Math. and Comp., Univ. of Manitoba, Winnipeg, Canada).
    • [13] Doedel E. J., Oldeman B. E., Champneys A. R., Dercole, F., Fairgrieve, T., Kuznetsov, Y. A., Pa enroth, R., Sandstede, B., Wang, X. & Zhang, C. [2007] AUTO07-p, Continuation and bifurcation software for ordinary di erential equations.
    • [14] Doedel, E. J., Oldeman, B. E. & Pando. C. L. [2011] \Bifurcation structures in a model of the CO2 laser with a fast saturable absorber", Int. J. Bifurcat. Chaos 21, 305{322.
    • [15] Ganapathisubramanian, N. & Showalter, K. [1983] \Bistability, mushrooms, and isolas", J. Chem. Phys. 80, 4177{4184.
    • [16] Golubitsky, M. & Schae er, D. G. [1985] Singularities and groups in bifurcation theory, vol. 1, Appl. Math. Sciences Vol. 51 (Springer).
    • [17] Henderson, M. E. [2002] \Multiple Parameter Continuation: Computing Implicitly De ned k-Manifolds", Int. J. Bifurcat. and Chaos, 12, 451{476.
    • [18] Janovsky, V. & Plechac, P. [1992] \Computer-Aided Analysis of Imperfect Bifurcation Diagrams, I. Simple Bifurcation Point and Isola Formation centers", SIAM J. on Num. Anal. 29, 498{512.
    • [19] Keller, H. B. [1977] "Numerical Solution of Bifurcation and Nonlinear Eigenvalue Problems", in Application of Bifurcation Theory, ed. P. Rabinowitz (Academic Press).
    • [20] Keller, H. B. [1980] "Isolas and perturbed bifurcation theory", in Engineering and Applied Science, eds. R. L. Sternberg, A. J. Kalinowski, J. S. Papadakis, (Marcel Dekker, New York), pp. 45{52.
    • [21] Kernevez, J. P., Liu, Y., Seoane, M. L., Doedel, E. J. [1990] \Optimization by Continuation", in Continuation and bifurcations: numerical techniques and applications, eds. D. Roose, B. de Dier & A. Spence (Springer), pp. 349{362.
    • [22] Kevrekidis, I. G., Aris, R., Schmidt, L. D. & Pelikan, S.[1984] \Numerical computation of invariant circles of maps", Physica D: Nonlinear Phenomena, 16, 243{251.
    • [23] Kuznetsov, Y. [2004] Elements of Applied Bifurcation Theory, third edition (Springer Verlag).
    • [24] Perko, L. [1990] \Global families of limit cycles of planar analytic systems", Trans. Amer. Math. Soc. 322, 627{656.
    • [25] Poston, T. & Stewart, I. [1978] Catastrophe theory and its applications, (Addison-Wesley Longman Ltd).
    • [26] Russell, R. D. & Christiansen, J. [1978] \Adaptive Mesh Selection Strategies for Solving Boundary-Value Problems", SIAM J. Numer. Anal., 15, 59{80, 1978.
    • [27] Seoane, M. L. [1989] \A continuation method for nding the centers of isolas of periodic solutions", in XIth Congress on Di erential Equations and Applications/First Congress on Applied Mathematics, Proceedings (Univ. Malaga Press), pp. 527{532,
    • [28] Schilder, F & Peckham, B. P. [2007] \Computing Arnol'd tongue scenarios", J. Comput. Phys. 220, 932-951.
    • [29] Stoer, J. & Bullirsch, R. [2002] Introduction to numerical analysis (Springer Verlag).
    • [30] Uppal, A., Ray, W. H. & Poore, A. B. [1976] \The classi cation of the dynamic behavior of continuous stirred tank reactorsin uence of reactor residence time", Chem. Eng. Sci. 31, 205{214.
    • [31] Van Veldhuizen, M. [1987] \A new algorithm for the numerical approximation of an invariant curve", SIAM J. Sci. Stat. Comp. 8, 951{962.
    • [32] Van Veldhuizen, M. [1988] \Convergence Results For Invariant Curve algorithm for the numerical approximation of an invariant curve", Math. comput. 51, 677{697.
    • [33] Wintner, A. [1931] \Beweis des E. Stromgrenschen dynamischen Abschlusprinzips der periodischen Bahngruppen im restringierten Dreikorperproblem", Math. Z. 34, 321{349.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article