Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Patel, P.; Harris, R.; Geddes, Stella M.; Strehle, E.M.; Watson, J.D.; Bashir, R.; Bushby, K.; Driscoll, P.C.; Keep, Nicholas H. (2008)
Publisher: Elsevier
Languages: English
Types: Article
Subjects: bcs
Mutations in the protein dysferlin, a member of the ferlin family, lead to limb girdle muscular dystrophy type 2B and Myoshi myopathy. The ferlins are large proteins characterised by multiple C2 domains and a single C-terminal membrane-spanning helix. However, there is sequence conservation in some of the ferlin family in regions outside the C2 domains. In one annotation of the domain structure of these proteins, an unusual internal duplication event has been noted where a putative domain is inserted in between the N- and C-terminal parts of a homologous domain. This domain is known as the DysF domain. Here, we present the solution structure of the inner DysF domain of the dysferlin paralogue myoferlin, which has a unique fold held together by stacking of arginine and tryptophans, mutations that lead to clinical disease in dysferlin.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • & Bushby, K. (1998). A gene related to Caenorhabditis elegans spermatogenesis factor fer-1 is mutated in limb-girdle muscular dystrophy type 2B. Nature Genetics 20, 37-42.
    • (1998). Dysferlin, a novel skeletal muscle gene, is mutated in Miyoshi myopathy and limb girdle muscular dystrophy. Nature Genetics 20, 31-6.
    • Achanzar, W. E. & Ward, S. (1997). A nematode gene required for sperm vesicle fusion. Journal of Cell Science 110 ( Pt 9), 1073-81.
    • (1995). Structure of the first C2 domain of synaptotagmin I: a novel Ca2+/phospholipid-binding fold. Cell 80, 929-38.
    • Essen, L. O., Perisic, O., Cheung, R., Katan, M. & Williams, R. L. (1996).
    • Crystal structure of a mammalian phosphoinositide-specific phospholipase C delta. Nature 380, 595-602.
    • Rizo, J. & Sudhof, T. C. (1998). C2-domains, structure and function of a universal Ca2+-binding domain. The Journal of Biological Chemistry 273, 15879-82.
    • Lu, J., Machius, M., Dulubova, I., Dai, H., Sudhof, T. C., Tomchick, D. R. & Rizo, J. (2006). Structural basis for a Munc13-1 homodimer to Munc13- 1/RIM heterodimer switch. PLoS Biology 4, e192.
    • Britton, S., Freeman, T., Vafiadaki, E., Keers, S., Harrison, R., Bushby, K. & Bashir, R. (2000). The third human FER-1-like protein is highly similar to dysferlin. Genomics 68, 313-21.
    • Yasunaga, S., Grati, M., Cohen-Salmon, M., El-Amraoui, A., Mustapha, M., Salem, N., El-Zir, E., Loiselet, J. & Petit, C. (1999). A mutation in OTOF, encoding otoferlin, a FER-1-like protein, causes DFNB9, a nonsyndromic form of deafness. Nature Genetics 21, 363-9.
    • Davis, D. B., Doherty, K. R., Delmonte, A. J. & McNally, E. M. (2002).
    • Calcium-sensitive phospholipid binding properties of normal and mutant ferlin C2 domains. The Journal of Biological Chemistry 277, 22883-8.
    • U., Hadhazy, M. & McNally, E. M. (2005). Normal myoblast fusion requires myoferlin. Development (Cambridge, England) 132, 5565-75.
    • Bansal, D., Miyake, K., Vogel, S. S., Groh, S., Chen, C. C., Williamson, R., McNeil, P. L. & Campbell, K. P. (2003). Defective membrane repair in dysferlin-deficient muscular dystrophy. Nature 423, 168-72.
    • Lennon, N. J., Kho, A., Bacskai, B. J., Perlmutter, S. L., Hyman, B. T. & Brown, R. H., Jr. (2003). Dysferlin interacts with annexins A1 and A2 and mediates sarcolemmal wound-healing. The Journal of Biological Chemistry 278, 50466-73.
    • Roux, I., Safieddine, S., Nouvian, R., Grati, M., Simmler, M. C., Bahloul, A., Perfettini, I., Le Gall, M., Rostaing, P., Hamard, G., Triller, A., Avan, P., Moser, T. & Petit, C. (2006). Otoferlin, defective in a human deafness form, is essential for exocytosis at the auditory ribbon synapse. Cell 127, 277-89.
    • Bateman, A., Coin, L., Durbin, R., Finn, R. D., Hollich, V., Griffiths-Jones, S., Khanna, A., Marshall, M., Moxon, S., Sonnhammer, E. L., Studholme, D. J., Letunic, I., Copley, R. R., Schmidt, S., Ciccarelli, F. D., Doerks, T., Schultz, J., Ponting, C. P. & Bork, P. (2004). SMART 4.0: towards genomic data integration. Nucleic Acids Research 32, D142-4.
    • Ponting, C. P., Mott, R., Bork, P. & Copley, R. R. (2001). Novel protein domains and repeats in Drosophila melanogaster: insights into structure, function, and evolution. Genome Research 11, 1996-2008.
    • Therrien, C., Dodig, D., Karpati, G. & Sinnreich, M. (2006). Mutation impact on dysferlin inferred from database analysis and computer-based structural predictions. Journal of the Neurological Sciences 250, 71-8.
    • Krissinel, E. & Henrick, K. (2004). Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallographica 60, 2256-68.
    • Holm, L. & Sander, C. (1995). Dali: a network tool for protein structure comparison. Trends in Biochemical Sciences 20, 478-80.
    • Laskowski, R. A. (1995). SURFNET: a program for visualizing molecular surfaces, cavities, and intermolecular interactions. Journal of Molecular Graphics 13, 323-30, 307-8.
    • M. (2006). A method for localizing ligand binding pockets in protein structures. Proteins 62, 479-88.
    • Flocco, M. M. & Mowbray, S. L. (1994). Planar stacking interactions of arginine and aromatic side-chains in proteins. Journal of Molecular Biology 235, 709-17.
    • Barker, J. A. & Thornton, J. M. (2003). An algorithm for constraint-based structural template matching: application to 3D templates with statistical analysis. Bioinformatics (Oxford, England) 19, 1644-9.
    • Bravo, J., Staunton, D., Heath, J. K. & Jones, E. Y. (1998). Crystal structure of a cytokine-binding region of gp130. The EMBO Journal 17, 1665-74.
    • Somers, W., Ultsch, M., De Vos, A. M. & Kossiakoff, A. A. (1994). The Xray structure of a growth hormone-prolactin receptor complex. Nature 372, 478-81.
    • Bernatchez, P. N., Acevedo, L., Fernandez-Hernando, C., Murata, T., Chalouni, C., Kim, J., Erdjument-Bromage, H., Shah, V., Gratton, J. P., McNally, E. M., Tempst, P. & Sessa, W. C. (2007). Myoferlin regulates vascular endothelial growth factor receptor-2 stability and function. The Journal of biological chemistry 282, 30745-53.
    • (1995). NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6, 277-93.
    • Vranken, W. F., Boucher, W., Stevens, T. J., Fogh, R. H., Pajon, A., Llinas, P., Ulrich, E. L., Markley, J. L., Ionides, J. & Laue, E. D. (2005). The CCPN data model for NMR spectroscopy: Development of a software pipeline.
    • Proteins 59, 687-696.
    • (1994). A Suite of Triple Resonance NMR Experiments for the Backbone Assignment of 15N, 13C, 2H Labeled Proteins with High Sensitivity. J Am Chem Soc 116, 11655-11666.
    • Muhandiram, D. R. & Kay, L. E. (1994). Gradient-Enhanced TripleResonance Three-Dimensional NMR Experiments with Improved Sensitivity.
    • J Magn Reson 103, 203-216.
    • Ottiger, M., Delaglio, F. & Bax, A. (1998). Measurement ofJand Dipolar Couplings from Simplified Two-Dimensional NMR Spectra. J Magn Reson 131, 373-378.
    • Ruckert, M. & Otting, G. (2000). Alignment of Biological Macromolecules in Novel Nonionic Liquid Crystalline Media for NMR Experiments. J Am Chem Soc 122, 7793-7797.
    • Brunger, A. T., Adams, P. D., Clore, G. M., DeLano, W. L., Gros, P., GrosseKunstleve, R. W., Jiang, J.-S., Kuszewski, J., Nilges, M., Pannu, N. S., Read, R. J., Rice, L. M., Simonson, T. & Warren, G. L. (1998). Crystallography & NMR System: A New Software Suite for Macromolecular Structure Determination. Acta Crystallographica 54, 905-921.
    • Linge, J. P. & Nilges, M. (1999). Influence of non-bonded parameters on the quality of NMR structures: a new force field for NMR structure calculation. J Biomol NMR 13, 51-9.
    • (2003). Refinement of protein structures in explicit solvent. Proteins 50, 496- 506.
    • Cornilescu, G., Delaglio, F. & Bax, A. (1999). Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J Biomol NMR 13, 289-302.
    • Dosset, P., Hus, J. C., Marion, D. & Blackledge, M. (2001). A novel interactive tool for rigid-body modeling of multi-domain macromolecules using residual dipolar couplings. J Biomol NMR 20, 223-31.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

  • BioEntity Site Name
    2dmhProtein Data Bank

Share - Bookmark

Funded by projects

  • WT

Cite this article