Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Gu, X-M; Huang, T-Z; Carpentieri, B (2016)
Publisher: Elsevier
Languages: English
Types: Article
In the present paper, we introduce a new extension of the conjugate residual (CR) for solving non-Hermitian linear systems with the aim of developing an alternative basic solver to the established biconjugate gradient (BiCG), biconjugate residual (BiCR) and biconjugate A-orthogonal residual (BiCOR) methods. The proposed Krylov subspace method, referred to as the BiCGCR2 method, is based on short-term vector recurrences and is mathematically equivalent to both BiCR and BiCOR. We demonstrate by extensive numerical experiments that the proposed iterative solver has often better convergence performance than BiCG, BiCR and BiCOR. Hence, it may be exploited for the development of new variants of non-optimal Krylov subspace methods.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] T.A. Davis, Direct Methods for Sparse Linear Systems, SIAM Series on the Fundamentals of Algorithms, SIAM, Philadelphia, USA, 2006.
    • [2] Y. Saad, Iterative Methods for Sparse Linear Systems, second ed., SIAM, Philadelphia, USA, 2003.
    • [3] V. Simoncini, D.B. Szyld, Recent computational developments in Krylov subspace methods for linear systems, Numer. Linear Algebra Appl., 14 (2007), pp. 1-59.
    • [4] M.H. Gutknecht, Lanczos-type solvers for nonsymmetric linear systems of equations, Acta Numer., 6 (1997), pp. 271-397.
    • [5] R. Barrett, M. Berry, T.F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, H.A. van der Vorst, Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods (2nd Edition), SIAM, Philadelphia, USA, 1994.
    • [6] M.R. Hestenes, E. Stiefel, Methods of conjugate gradients for solving linear systems, J. Res. Nat. Bur. Standards, 49 (1952), pp. 409-436.
    • [7] X.-M. Gu, M. Clemens, T.-Z. Huang, L. Li, The SCBiCG class of algorithms for complex symmetric systems with applicationsin several electromagnetic model problems, Comput. Phys. Commun., 191 (2015), pp. 52-64.
    • [8] C. Paige, M. Saunders, Solution of sparse indefinite systems of linear equations, SIAM J. Numer. Anal. 12 (1975), pp. 617-629.
    • [9] E. Stiefel, Relaxationsmethoden bester Strategie zur Lo¨sung linearer Gleichungssysteme, Comment. Math. Helv., 29 (1955), pp. 157-179.
    • [10] S.F. Ashby, T.A. Manteuffel, P.E. Saylor, A taxonomy for conjugate gradient methods, SIAM J. Numer. Anal., 27 (1990), pp. 1542-1568.
    • [11] C. Lanczos, Solution of systems of linear equations by minized itertions, J. Res. Nat. Bureau Standards, 49 (1952), pp. 33-53.
    • [12] R. Fletcher, Conjugate gradient methods for indefinite systems, in Numerical AnalysisDundee 1975, Alistair Watson G. (ed.), Lecture Notes in Mathematics, vol. 506, Springer: Heidelberg, 1976, pp. 73-89.
    • [13] Y. Saad, M.H. Schultz, GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7 (1986), pp. 856-869.
    • [14] S.C. Eisenstat, H.C. Elman, M.H. Schultz, Variational iterative methods for nonsymmeric systems of linear equations, SIAM J. Sci. Numer. Anal., 20 (1983), pp. 345537.
    • [15] T. Sogabe, M. Sugihara, S.-L. Zhang, An extension of the conjugate residual method to nonsymmetric linear systems, J. Comput. Appl. Math., 226 (2009), pp. 103-113.
    • [16] T. Sogabe, Extensions of the conjugate residual method (Ph.D. dissertation), Department of Applied Physics, University of Tokyo, Tokyo, Japan, 2006. Avaiable online at http: //www.ist.aichi-pu.ac.jp/person/sogabe/thesis.pdf.
    • [17] Y.-F. Jing, T.-Z. Huang, Y. Zhang, L. Li, G.-H. Cheng, Z.-G. Ren, Y. Duan, T. Sogabe, B. Carpentieri, Lanczos-type variants of the COCR method for complex nonsymmetric linear systems, J. Comput. Phys., 228 (2009), pp. 6376-6394.
    • [18] B. Carpentieri, Y.-F. Jing, T.-Z. Huang, The BiCOR and CORS iterative algorithms for solving nonsymmetric linear systems, SIAM J. Sci. Comput., 33 (2011), pp. 3020-3036.
    • [19] P. Sonneveld, CGS, a fast Lanczos-type solver for nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 10 (1989), pp. 36-52.
    • [21] M.H. Gutknecht, Variants of BiCGSTAB for matrices with complex spectrum, SIAM J. Sci. Comput, 14 (1993), pp. 1020-1033.
    • [22] G.L.G. Sleijpen, H.A. van der Vorst, D.R. Fokkema, BiCGstab(ℓ) and other hybrid Bi-CG methods, Numer. Algorithms, 7 (1994), pp. 75-109.
    • [23] G.L.G. Sleijpen, D. R. Fokkema, BiCGstab(ℓ) for linear equations involving unsymmetric matrices with complex spectrum, Electron. Trans. Numer. Anal., 1 (1993), pp. 11-32.
    • [24] D.R. Fokkema, G.L.G. Sleijpen, H.A. Van der Vorst, Generalized conjugate gradient squared, J. Comput. Appl. Math., 71 (1996), pp. 125-146.
    • [25] S.-L. Zhang, GPBi-CG: Generalized product-type methods based on Bi-CG for solving nonsymmetric linear systems, SIAM J. Sci. Comput., 18 (1997), pp. 537-551.
    • [26] R.W. Freund, N.M. Nachtigal, QMR: A quasi-minimal residual method for non-Hermitian linear systems, Numer. Math., 60 (1991), pp. 315-339.
    • [27] R.W. Freund, M.H. Gutknecht, N.M. Nachtigal, An implementation of the look-ahead Lanczos algorithm for non-Hermitian matrices, SIAM J. Sci. Comput., 14 (1993), pp. 137- 158.
    • [28] R.W. Freund, A transpose-free quasi-minimal residual algorithm for non-Hermitian linear systems, SIAM J. Sci. Comput., 14 (1993), pp. 470-482.
    • [29] T.F. Chan, E. Gallopoulos, V. Simoncini, T. Szeto, C.H. Tong, A quasi-minimal residual variant of the Bi-CGSTAB algorithm for nonsymmetric systems, SIAM J. Sci. Comput., 15 (1994), pp. 338-347.
    • [30] P. Sonneveld, M.B. van Gijzen, IDR(s): A family of simple and fast algorithms for solving large nonsymmetric linear systems. SIAM J. Sci. Comput., 31 (2008), pp. 1035-1062.
    • [31] M.-C. Yeung, T.F. Chan, ML(k)BiCGSTAB: A BiCGSTAB variant based on multiple Lanczos starting vectors, SIAM J. Sci. Comput., 21 (1999), pp. 1263-1290.
    • [32] K. Abe, G.L.G. Sleijpen, BiCR variants of the hybrid BiCG methods for solving linear systems with nonsymmetric matrices, J. Comput. Appl. Math., 234 (2010), pp. 985-994.
    • [33] J. Zhang, H. Dai, Generalized conjugate A-orthogonal residual squared method for complex non-Hermitian linear systems, J. Comput. Math., 32 (2014), pp. 248-265.
    • [34] L. Zhao, T.-Z. Huang, A hybrid variant of the BiCOR method for a nonsymmetric linear system with a complex spectrum, Appl. Math. Lett. 26 (2013), pp. 457-462.
    • [35] L. Zhao, T.-Z. Huan, Y.-F. Jing, L.-J. Deng, A generalized product-type BiCOR method and its application in signal deconvolution, Comput. Math. Appl., 66 (2013), pp. 1372-1388.
    • [36] Y.-F. Jing, T.-Z. Huang, Y. Duan, B. Carpentieri, A comparative study of iterative solutions to linear systems arising in quantum mechanics, J. Comput. Phys., 229 (2010), pp. 8511- 8520.
    • [37] R.W. Freund, T. Szeto, A quasi-minimal residual squared algorithm for non-Hermitian linear systems, in Proceeding of 2nd Copper Mountain Iterative Methods Conference, April 1992, UCLA-CAM Tech. Rep. 92-19. Avaiable online at ftp://ftp.math.ucla.edu/pub/ camreport/cam92-19.pdf.
    • [38] J. Zhang, H. Dai, A new quasi-minimal residual method based on a biconjugate Aorthonormalization procedure and coupled two-term recurrences, Numer. Algorithms, 70 (2015), pp. 875-896.
    • [39] T. Sogabe, S.-L. Zhang, A COCR method for solving complex symmetric linear systems J. Comput. Appl. Math., 199 (2007), pp. 297-303.
    • [40] M. Clemens, T. Weiland, U. van Rienen, Comparison of Krylov-type methods for complex linear systems applied to high-voltage problems, IEEE Trans. Magn., 34 (5) (1998), pp. 3335-3338.
    • [41] M. Clemens, U. van Rienen, T. Weiland, Correction to “comparison of Krylov-type methods for complex linear systems applied to high-voltage problems”, IEEE Trans. Magn., (5) (50), 2014, p. 9700101.
    • [42] J. Zhang, H. Dai, J. Zhao, A new family of global methods for linear systems with multiple right-hand sides, J. Comput. Appl. Math., 236 (2011), pp. 1562-1575.
    • [43] X.-M. Gu, T.-Z. Huang, J. Meng, T. Sogabe, H.-B. Li, L. Li, BiCR-type methods for families of shifted linear systems, Comput. Math. Appl., 68 (2014), pp. 746-758.
    • [44] T.-X. Gu, X.-Y. Zuo, L.-T. Zhang, W.-Q. Zhang, Z.-Q. Sheng, An improved bi-conjugate residual algorithm suitable for distributed parallel computing, Appl. Math. Comput., 186 (2007), pp. 1243-1253.
    • [45] M. Clemens, T. Weiland, Iterative methods for the solution of very large complex-symmetric linear systems of equations in electromagnetics, in Eleventh Copper Mountain Conference on Iterative Methods, Part 2, T.A. Manteuffel, S.F. McCormick (Eds.), 1996, 7 pages.
    • [46] I.S. Duff, R.G. Grimes, J.G. Lewis, User's guide for the Harwell-Boeing sparse matrix collection, Tech. Rep. RAL-92-086, Rutherford Appleton Lab., Chilton, UK, 1992.
    • [47] X.-M. Gu, GitHub's repositories: Test matrices, Augest 2015. Available online at https: //github.com/Hsien-Ming-Ku/Test_matrices/tree/master/Problems.
    • [48] M. Baertschy, X. Li, Solution of a three-body problem in quantum mechanics using sparse linear algebra on parallel computers, in Proceedings of the 2001 ACM/IEEE conference on Supercomputing (Supercomputing '01), ACM, New York, 2001, p. 47.
    • [49] T. Davis, Y. Hu, The University of Florida Sparse Matrix Collection, ACM Trans. Math. Softw., 38 (1) (2011), Article 1, 25 pages. Avaiable online at http://www.cise.ufl.edu/ research/sparse/matrices/.
    • [50] Z.-Z. Bai, Structured preconditioners for nonsingular matrices of block two-by-two structures, Math. Comp., 75 (2006), pp. 791-815.
    • [51] O.G. Ernst, M.J. Gander, Why it is difficult to solve Helmholtz problems with classical iterative methods, in vol. 83 of Numerical Analysis of Multiscale Problems. Edited by I. Graham, T. Hou, O. Lakkis and R. Scheichl. Springer-Verlag (2011), pp. 325-361.
    • [52] E. Chow, Y. Saad, Experimental study of ILU preconditioners for indefinite matrices, J. Comput. Appl. Math., 86 (1997), pp. 387-414.
    • [53] X.-M. Gu, T.-Z. Huang, B. Carpentieri, L. Li, C. Wen, A hybridized iterative algorithm of the BiCORSTAB and GPBiCOR methods for solving non-Hermitian linear systems, Comput. Math. Appl., 70 (2015), pp. 3019-3031.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article