Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Aristizabal Zuluaga, BH; Vanegas C., E; Mariscal Moreno, JP; Camargo-Valero, MA (2015)
Publisher: Universidad Nacional de Colombia
Languages: English
Types: Article
Landfilling is the main disposal technology for municipal solid wastes (MSW) in Colombia. Currently, about 50% of the landfill systems are close to the end of their useful life. It is necessary to evaluate alternative of disposal and treatment for MSW. Municipal solid wastes generated in Colombia contain a high proportion of organic material, which contributes to the generation of greenhouse gas emissions (GHG) in landfills. In this regard, anaerobic digestion is an alternative technology for waste treatment. Additionally, the produced methane (CH4) could be used as an energy source. This paper seeks to make a direct comparison between GHG emissions produced in landfills and the anaerobic digestion process as options for the disposal and treatment of municipal organic wastes in Colombia. The emissions of GHG were calculated considering a study case in the landfill disposal of garden wastes in the city of Manizales, Colombia. Theoretical models were used to quantify the emissions of methane and carbon dioxide. The calculation methodologies applied in this study showed considerable differences in its results, mainly for the assessment of anaerobic digestion by emission factors. However, it was possible to estimate that about 50 tons of methane and 1200 tons of carbon dioxide, would be avoided annually in the city of Manizales if the anaerobic digestion was used as an alternative to the current green waste disposal technology.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Arrieta, A., García Posada, J. M. & Burbano Martínez, H. J., 2006. Análisis comparativo de las propiedades de combustión de las mezclas metano-hidrógeno con respecto al metano. Ingeniería y Desarrollo, Issue 20, pp. 19-34
    • Baserga, U. & Egger, K., 1997. Vergärung von Energiegras zur Biogasgewinnung, Tanikon: Bundesamt fur Energiewirtschaft.
    • Bolaños Valencia, I. V., 2014. Digestión anaerobia como alternativa de manejo y aprovechamiento sostenible de los residuos de poda de la Universidad Nacional de Colombia Sede Palmira, Palmira: Trabajo de grado para optar el título de Ingeniera Ambiental.
    • Bond, T. & Templeton, M. R., 2011. History and future of domestic biogas plants in the developing world. Energy for Sustainable, Issue 15, pp. 347-354.
    • Brown, D. & Li, Y., 2013. Solid state anaerobic co-digestion of yard waste and food waste for biogas production. Bioresource Technology, Issue 27, pp. 275-280.
    • Cadavid Rodríguez, L. S., 2012. Reducing the Environmental Impact of Wastewater Screenings and Producing Valuable Byproducts through the Application of Anaerobic Technologies, Leeds: University of Leeds.
    • Cirne, D., Lehtomäki, A., Björnsson, L. & Blackall, L., 2007. Hydrolysis and microbial community analyses in two-stage anaerobic digestion of energy crops. Appl Microbiol, pp. 516-27.
    • CYDEP, 2007. Contrato N° 001 (023 / 06) Informe 2. Consultoría que defina las condiciones económicas, ifnancieras, ambientales, regulatorias y legales bajo las cuales se entregará el servicio público de aseo en la Isla de San Andrés, Bogotá: Ministerio de Ambiente, Vivienda y Desarrollo Territorial. Fidupetrol.
    • EPA, 2014. Agencia de Protección Ambiental de Estados Unidos. Disponible en: http://epa.gov/ climatechange/ghgemissions/gases/ch4.html [Fecha de acceso: 22 Febrero 2015].
    • EPA, 2014. Agencia de Protección Ambiental de Estados Unidos EPA. Disponible en: http://www.epa.gov/ earlink1/espanol/cambioclimatico/ciencia/causas. html [Fecha de acceso: 22 Febrero 2015].
    • Galgani, P., Ester, v. d. V. & Gijsbert, K., 2014. Composting, anaerobic digestión and biochar production in Ghana. Environmental-economic asessment in the context of voluntary carbon markets. Waste Management, Issue 34, pp. 2454- 2465.
    • Hanson, A., Samani, Z. & Yu, H. W., 2002. Energy recovery from grass using two-phase anaerobic digestión. Waste Management, pp. 22:1-5.
    • IDEAM, 2009. Inventario Nacional de Fuentes y Sumideros de Gases de Efecto Invernadero.
    • IPCC, 2006. 2006 IPCC Guidelines for National Greenhouse Gas Inventories.
    • Jiménez, O. A., 2014. Informe sobre la política pública de inclusión de recicladores de oficio en la cadena de reciclaje, s.l.: Programa Cómo vamos Fundación Corona.
    • KTBL & Gasertrage, 2005. Gasausbeuten in landwirtschaftlichen Biogasanlagen, Darmstadt: Association for Technology and Structures in Agriculture.
    • Kumar, A. & Sharma, M. P., 2014. Estimation of GHG emission and energy recovery potential from MSW landfill sites. Sustainable Energy Technologies and Assessments, Issue 5, pp. 50-61.
    • Londoño Carvajal, A., Marín Arias, J. E., Ocampo López, O. L. & González Hoyos, N. d. J., 2014. Estimación de la producción de lixiviados en rellenos sanitarios. Manizales: Universidad Nacional de Colombia.
    • Mendoza Salgado, P. & López Trujillo, V., 2004. Estudio de la calidad del lixiviado del relleno sanitario La Esmeralda y su respuesta bajo tratamiento en filtro anaerobio piloto de flujo ascendente. Manizales: Tesis de pregrado. Universidad Nacional de Colombia- Sede Manizales.
    • Michalska, K., Krystian, M., Liliana, K. & Stanislaw, L., 2012. Influence of pretreatment with Fenton's reagent on biogas production and methane yield from lignocellulosic biomass. Bioresource Technology, Issue 119, pp. 72-78.
    • Moller, J., Boldrin, A. & Christensen, T. H., 2009. Anaerobic digestión and digestate use: accounting of greenhouse gases and global warming contribution. Waste Management.
    • Murphy, J. D. & Nizami, A. S., 2010. What type of digester configurations should be employed to produce biomethane from grass silage? Renewable and Sustainable Energy Reviews, Issue 14, pp. 1558-1568.
    • Stewart, D. J., Bogue, M. J. & Badger, D. M., 1984. Biogas production from crops and organic wastes. 2. Results of continuous digestión tests. New Zealand Journal of Science, 27(3), pp. 285-294.
    • SUI, 2015. SUI Sistema Único de Información de Servicios. Disponible en: http://bi.superservicios. gov.co/o3web/jdesktop.jsp [Fecha de acceso: 3 Marzo 2015].
    • Superservicios, 2013. Disposición Final de Residuos en Colombia 2013.
    • Zheng, Y., Jia, Z., Fuqing, X. & Yebo, L., 2014. Pretreatment of lignocellulosic biomass for enhanced biogás production. Progress in Energy and Combustion Science, Issue 42, pp. 35-53.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article