- Chapter 1: Introduction ...................................................................................................
- Chapter Two: Number Sense- Computational Estimation and Multiple Solutions 3.8 CONCLUSION ............................................................................................................
- 9.6.2 How much information eachrepresentationshould express..........................265 9.6.3 Similarity between Representations ...............................................................266
- 9.6.4 How many representations?..........................................................................267 9.6.5 Automatic Translation
- 9.7 FUTURE WORK.........................................................................................................271 9.7.1 Multiple Solutionsand ComputationalEstimation Dugdale, S. (1982). Green globs: A micro-computer application for graphing of equations. Mathematics Teacher, j, 208-214.
- Duncker, K. (1945). On problem solving. Psychological Monographs, 5$(5).
- Ehrlich, K., & Johnson-Laird, P. N. (1982). Spatial descriptions and referential continuity. Journal of Verbal Learning and Verbal Behaviour, 21,296-306.
- Elsom-Cook, M. (1990). Guided discovery tutoring. London: Paul Chapman Publishing Ltd.
- Fischbein, E., Drei, M., Nello, M. S., & Merino, M. S. (1985). The role of implicit models in solving verbal problems in multiplication and division. Journal for Research in Mathematics Education, Ik(1), 3-17.
- Forrester, M. A., Latham, J., & Shire, B. (1990). Exploring estimation in young primary school children. Educational Psychology, IQ(4), 283-300.
- Fox, M. (1988) Theory and design for a visual calculator for arithmetic. CITE technical report no. 32, Institute of Educational Technology,Open University.
- Fuson, K. C. (1992). Researchon whole number addition and subtraction. In D. Grouws (Eds.), Handbook of teaching and learning mathematics(pp. 243-275). New York: Macmillan.
- Genter, D. (1989). The mechanismsof analogical learning. In S. Vosniadou & A. Ortony (Eds.), Similarity and analogical reasoning (pp 199-242). Cambridge: CambridgeUniversity Press.
- Gilmore, D. J., & Green, T. R. G. (1984). Comprehensionand recall of miniature programs.International Journal of Man-Machine Studies,21,31-48.
- Gilmore, D. J. (1996). The relevance of HCI guidelines for educational interfaces. Machine-Mediated Learning, .(2), 119-133.
- Green, T. R. G. (1989). Cognitive dimensions of notations. In A. Sutcliffe & L. Macaulay (Ed.), People and Computers . (pp 443-460). Cambridge: Cambridge University Press.
- Green, T. R. G. (1990). The cognitive dimension of viscosity: A sticky problem for HCI. In D. Diaper, D. Gilmore, G. Cockton, & B. Shackel (Ed.), HumanComputer Interaction - INTERACT 90. (pp 79-86). Amsterdam: Elsevier Science.
- Green, T. R. G., Petre, M., & Bellamy, R. K. E. (1991). Comprehensibility of visual and textual programs: a test of superlativism against the 'match-mismatch' conjecture. In Proceedings of Empirical Studies of Programmers: Fourth Workshop (pp. 121-146).
- Green, T. R. G., & Petre, P. (1996). Usability analysis of visual programming environments: a 'cognitive dimensions' framework. Journal of Visual Languages and Visual Computing, 2,134-174.
- Greer, B. (1992). Multiplication and division as models of situations. In D. Grouws (Eds. ), Handbook of teaching and learning mathematics (pp 276-295) New York: Macmillan PublishingCompany.
- Hennessy, S., O'Shea, T., Evertsz, R., & Floyd, A. (1989). An intelligent tutoring system approach to teaching p ismary mathematics (CITE Report No. 93). Institute of Educational Technology, Open University.
- Hennessy, S., Twigger, D., Driver, R., O'Shea, T., O'Malley, C., Byard, M., Draper, S., Hartley, R., Mohamed, R. & Scanlon, E. (1995) Design of a computeraugmented curriculum for mechanics. International Journal of Science Education. 17(11,75-92.
- Hofstadter, D. R. (1985). Metamagical themas: Questing for the essence of mind and pattern. London: Penguin Books.
- Howe, C.J., Rodgers, C., and Tolmie, A. (1990) Physics in the primary school; peer interaction and the understanding of floating and sinking. European Journal of Psychology of Education. 459-75.
- Hoz, R., & Harel, G. (1989). The facilitating role of table forms in solving algebra speed problems: Real or imaginary. In Proceedings of the 13th International Conference for the Psychology of Mathematics Education, vol. 2 (pp. 123- Kaput, J. J. (1989). Linking representations in the symbol systems of algebra. In S. Wagner & C. Kieran (Eds.), Research issues in the learning and teaching of Algebra (pp. 167-194).Hillsdale, NJ: LEA.
- Kaput, J. J. (1992). Technology and mathematics education. In D. A. Grouws (Ed. ), Handbook of teaching and learning mathematics (pp. 515-556) New York: Macmillan Publishing Company.
- Kaput, J. (1994). Democratizing accessto calculus: New routes using old roots. In A. Schoenfeld (Eds. ), Mathematical thinking and problem solving (pp. 77-156). Hillsdale, NJ: LEA.
- Kaput, J., & Maxwell-West, M. (1994). Missing-value proportional reasoning problems: Factors affecting informal reasoning patterns. In G. Harel & J. Confrey (Eds.), The development of multiplicative reasoning in the learning of mathematics (pp. 237-292). Albany, New York: State University of New York Press.
- Koedinger,K. R., & Anderson,J. R. (1990). Abstractplanning and perceptualchunks: Elementsof expertisein Geometry.Cognitive Science,14,511-550.
- Laborde, C. (1996). Towards a new role of diagrams in dynamic geometry? In Proceedings of the European Conference of Artificial Intelligence in Education, (pp. 350-356). Lisbon.
- Lampert, M. (1986a). Knowing, doing, and teaching multiplication. Cognition and Instruction, .(4), 305-342.
- Lampert, M. (1986b). Teaching multiplication. Journal of Mathematical Behaviour, (3), 241-280.
- Lampert, M. (1990). When the problem is not the question and the solution is not the answer: Mathematical knowing and teaching. American Educational Research Journal, 21(1), 29-63.
- Larkin, J. H., & Simon, H. A. (1987). Why a diagram is (sometimes) worth ten thousand words. Cognitive Science, II, 65-99.
- LeFevre, J., Greenham,S. L., & Waheed,N. (1993). The developmentof procedural and conceptual knowledge in computational estimation. Cognition and Instruction 11(2), 95-132.
- Lepper, M. R., Woolverton, M., Mumme, D. L., & Gurtner, J. (1993). Motivational techniques of expert human tutors: Lessonsfor the design of computer-based tutors. In S. J. Derry & S. P. Lajoi (Eds.), Computersas cognitive tools (pp. 75- 105).Hillsdale, NJ: LEA.
- Levine, D. R. (1982). Strategy use and estimation ability of college students. Journal for Research in Mathematics Education, 11,350-359.
- Lohse, G. L., Biolsi, K., Walker, N., & Rueler, H. (1994). A classification of visual representations. Communications of the A. C.M., fl(l2), 36-49.
- Luchins, A. S., & Luchins, E. H. (1950). New experiemental attempts at preventing mechanization in problem solving. Journal of General Psychology. 4.2.279- Markovits, Z. (1989). Reactions to the number sense conference. In J. T. Sowder & B. P. Schappelle (Eds.), Establishing foundations for research on number sense Palmer,S. E. (1978). Fundamentalaspectsof cognitive representation.In E. Rosch& B. B. Lloyd (Eds.), Cognition and categorization (pp 259-303). Hillsdale, NJ: Plötzner, R. (1995). The construction and coordination of complementary problem representations in physics. Journal of Artificial Intelligence in Education, 6(2/3), 203-238.
- Petre (1.993).Using graphical representationsrequires skill, and graphical readership is an acquired skill. In R. Cox, M. Petre,J. Lee, & P. Brna (Eds.), Proceedings of AI-ED93 workshop Graphical Representations. Reasoning and Communication. (pp. 55-58). Edinburgh.
- Petre,M., & Green, T. R. G. (1993). Learning to read graphics: Some evidencethat 'seeing'an information display is an acquired skill. Journal of Visual Languages and Computing, 4,55-70.
- Philipp, R. A., Flores, A., Sowder,J. T., & Schappelle,B. P. (1994). Conceptionsand practices of extraordinary mathematics. Journal of Mathematical Behaviour, f3(2), 155-180.
- Pimm, D. (1995). Symbolsand meaningsin school mathematics.London: Routledge Price, M., & Foreman, J. (1989). A prIME experience. Mathematics in School Resnick, L. B. (1983). A developmental theory of number understanding. In H. P. Ginsburg (Eds. ), The development of mathematical thinking (pp. 109-151).
- Resnick, L. B. (1989). Defining, assessingand teaching number sense. In J. T. Sowder & B. P. Schappelle (Ed.), Establishing foundations for research on number sense Roberts, M. J., Wood, D. J., & Gilmore, D. J. (1994). The sentence-picture verification task: Methodological and theoretical difficulties. British Journal of Rubenstein, R. N. (1985). Computational estimation and related mathematical skills. Journal for Research in Mathematics Education, I¢(2), 106-119.
- Santos, M. S. (1994). Students approaches to solve three problems that involve various methods of solution. In Proceedings of the 18th International Conference for the Psychology of Mathematics Education, vol. 4 (pp. 193- Scaife, M., & Rogers, Y. (1996). External cognition: how do graphical representationswork? International Journal of Human-Computer Studies, 5, 185-213.
- Schoen, H. L., Frisen, C. D., Jarrett, J. A., & Urbatsh, T. D. (1981). Instruction in Schwartz, D. L. (1995). The emergence of abstract representations in dyad problem solving. The Journal of the Learning Sciences, 4(3), 321-354.
- Self, J. A. (1990). Bypassing the intractable problem of student modelling. In C. Frasson & G. Gauthier (Eds. ), Intelligent tutoring systems (pp. 107-123). Norwood, New Jersey: Ablex Publishing Company.
- Snow, R. E., & Yalow, E. (1982). Education and Intelligence. In R. J. Sternberg (Eds.), A handbook of human intelligence (pp 493-586). Cambridge: Cambridge Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive Science,,12257-285.
- Tabachneck, H. J. M., Koedinger, K. R., & Nathan, M. J. (1994). Towards a Tabachneck, H. J. M., Leonardo, A. M., & Simon, H. A. (1994). How does an expert Xploratorium (1991). Xploratorium.
- 30% to 20% less 20% to 10% less 10% to 0% less 20% to 10% to 10%less 0% less 30% to 20% less 20% to 10% less 20% to 10% to 10%less 0% less