LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Craig, Timothy J.; Copley, Alex (2014)
Publisher: Elsevier BV
Journal: Earth and Planetary Science Letters
Languages: English
Types: Article
Subjects: Space and Planetary Science, Earth and Planetary Sciences (miscellaneous), Geophysics, Geochemistry and Petrology
Most properties of oceanic lithosphere are widely observed to be dependent on the age of the plate, such as water depth, heat flow, and seismogenic thickness. However, estimates of the ‘effective elastic thickness' of oceanic lithosphere based on the deflection of the plate as it enters a subduction zone show little correlation with the age of the incoming lithosphere. This paradox requires reconciliation if we are to gain a full understanding of the structure, rheology, and behaviour of oceanic lithosphere. Here, we show that the permanent deformation of the plate due to outer-rise faulting, combined with uncertainties in the yield stress of the lithosphere, the in-plane forces transmitted through subduction zones, and the levels of noise in bathymetric and gravity data, prevents simple elastic plate modelling from accurately capturing the underlying rheological structure of the incoming plate. The age-independent estimates of effective elastic thickness obtained by purely elastic plate modelling are therefore not likely to represent the true rheology of the plate, and hence are not expected to correspond to the plate age. Similar effects may apply to estimates of elastic thickness from continental forelands, with implications for our understanding of continental rheology.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Becker, J.J., Sandwell, D.T., Smith, W.H.F., Braud, J., Binder, B., Depner, J., Fabre, D., Factor, J., Ingalls, S., Kim, S.-H., Ladner, R., Marks, K., Nelson, S., Pharaoh, A., Sharman, G., Trimmer, R., VonRosenburg, J., Wallace, G., Weatherall, P., 2009. Global bathymetry and elevation data at 30 arc seconds resolution: SRTM30PLUS. Mar. Geod. 32 (4), 355-371.
    • Bry, M., White, N., 2007. Reappraising elastic thickness variation at oceanic trenches. J. Geophys. Res. 112. http://dx.doi.org/10.1029/2005JB004190.
    • Burov, E., 2010. The equivalent elastic thickness (Te ), seismicity and the long-term rheology of continental lithosphere: Time to burn-out 'crème brûlée'? Insights from large-scale geodynamic modeling. Tectonophysics 484, 4-26.
    • Cattin, R., Martelet, G., Henry, P., Avouac, J.P., Diament, M., Shakya, T.R., 2001. Gravity anomalies, crustal structure and thermo-mechanical support of the Himalaya of Central Nepal. Geophys. J. Int. 147, 381-392.
    • Chang, J.-H., Yu, H.-S., Lee, T.-Y., Hsu, H.-H., Liu, C.-S., Tsai, Y.-T., 2012. Characteristics of the outer rise seaward of the Manila Trench and implications in TaiwanLuzon convergence belt, South China Sea. Mar. Geophys. Res. 33, 351-367. http://dx.doi.org/10.1007/s11001-013-9168-6.
    • Chapple, W.M., Forsyth, D.W., 1979. Earthquakes and bending of plates and trenches. J. Geophys. Res. 84, 6729-6749.
    • Chen, W., Kao, H., 1996. Seismotectonics of Asia: some recent progress. In: Yin, A., Harrison, M. (Eds.), The Tectonic Evolution of Asia. Cambridge University Press, pp. 37-62.
    • Chen, W.-P., Molnar, P., 1996. Source parameters of earthquakes and intraplate deformation beneath the Shillong Plateau and the Northern Indoburman ranges. J. Geophys. Res. 95, 12527-12552.
    • Christensen, D.H., Ruff, L.J., 1988. Seismic coupling and outer rise earthquakes. J. Geophys. Res. 93, 13421-13444.
    • Contreras-Reyes, E., Osses, A., 2010. Lithospheric flexure modelling seaward of the Chile trench: implications for oceanic plate weakening in the Trench Outer Rise region. Geophys. J. Int. 182, 97-112. http://dx.doi.org/10.1111/ j.1365-246X.2010.04629.x.
    • Copley, A., Avouac, J.-P., Royer, J.-Y., 2010. India-Asia collision and the Cenozoic slowdown of the Indian plate: Implications for the forces driving plate motions. J. Geophys. Res. 115. http://dx.doi.org/10.1029/2009JB006634.
    • Copley, A., Avouac, J.-P., Hollingsworth, J., Leprince, S., 2011. The 2001 Mw 7.6 Bhuj earthquake, low fault friction, and the crustal support of plate driving forces in India. J. Geophys. Res. 116. http://dx.doi.org/10.1029/2010JB008137.
    • Craig, T.J., Copley, A., Jackson, J., 2014. A reassessment of outer-rise seismicity and its implications for the mechanics of oceanic lithosphere. Geophys. J. Int. http://dx.doi.org/10.1093/gji/ggu013.
    • Forsyth, D.W., 1980. Comparison of mechanical models of the oceanic lithosphere. J. Geophys. Res. 85, 6364-6368.
    • Jackson, J., Priestley, K., Allen, M., Berberian, A., 2002. Active tectonics of the South Caspian Basin. Geophys. J. Int. 148, 214-245.
    • Jackson, J., McKenzie, D., Priestley, K., Emmerson, B., 2008. New views on the structure and rheology of the lithosphere. J. Geol. Soc., Lond. 165, 453-465. http:// dx.doi.org/10.1144/0016-76492007-109.
    • Levitt, D.A., Sandwell, D.T., 1995. Lithospheric bending at subduction zones based on depth soundings and satellite gravity. J. Geophys. Res. 100, 379-400.
    • Maggi, A., Jackson, J.A., McKenzie, D., Priestley, K., 2000. Earthquake focal depths, effective elastic thickness, and the strength of the continental lithosphere. Geology 28, 495-498.
    • McAdoo, D.C., Caldwell, J.G., Turcotte, D.L., 1978. On the elastic-perfectly plastic bending of the lithosphere under generalised loading with application to the Kuril Trench. Geophys. J. R. Astron. Soc. 54, 11-26.
    • McAdoo, D.C., Martin, C.F., Poulouse, S., 1985. Seasat observations of flexure: evidence for a strong lithosphere. Tectonophysics 116, 209-222.
    • McKenzie, D., Jackson, J., Priestley, K., 2005. Thermal structure of oceanic and continental lithosphere. Earth Planet. Sci. Lett. 233, 337-349. http://dx.doi.org/ 10.1016/j.epsl.2005.02.005.
    • McNutt, M.K., 1984. Lithospheric flexure and thermal anomalies. J. Geophys. Res. 89, 11180-11194.
    • McQueen, H.W.S., Lambeck, K., 1989. The accuracy of some lithospheric bending parameters. Geophys. J. 96, 401-413.
    • Molnar, P., Lyon-Caen, H., 1988. Some simple physical aspects of the support, structure, and evolution of mountain belts. Spec. Pap., Geol. Soc. Am. 218, 179-207.
    • Molnar, P., Tapponnier, P., 1978. Active tectonics of Tibet. J. Geophys. Res. 83, 5361-5375. http://dx.doi.org/10.1029/JB083iB11p05361.
    • Nemati, M., Hollingsworth, J., Zhan, Z., Bolourchi, M.J., Talebian, M., 2013. Microseismicity and seismotectonics of the South Caspian Lowlands, NE Iran. Geophys. J. Int. 193, 1053-1070. http://dx.doi.org/10.1093/gji/ggs114.
    • Parsons, B., Sclater, J.G., 1977. An analysis of the variation of ocean floor bathymetry and heat flow with age. J. Geophys. Res. 82, 803-827.
    • Press, W.H., Seukolsky, S.A., Vetterling, W.T., Flannery, B.P., 2007. Numerical Recipes: The Art of Scientific Computing, 3rd ed. Cambridge University Press.
    • Sloan, R.A., Jackson, J.A., McKenzie, D., Priestley, K., 2011. Earthquake depth distribution in Central Asia, and their relations with lithosphere thickness, shortening and extension. Geophys. J. Int.. http://dx.doi.org/10.1111/ j.1365-246X.2010.04882.x.
    • Stauder, W., 1968. Tensional character of earthquake foci beneath the Aleutian Trench with relation to sea-floor spreading. J. Geophys. Res. 73, 7693-7701.
    • Watts, A.B., 2001. Isostacy and Flexure of the Lithosphere. Cambridge University Press.
    • Watts, A.B., Sandwell, D.T., Smith, W.H.F., Wessel, P., 2006. Global gravity, bathymetry and the distribution of submarine volcanism through space and time. J. Geophys. Res. 111. http://dx.doi.org/10.1029/2005JB004083.
    • Wiens, D.A., Stein, S., 1983. Age dependence of oceanic intrplate seismicity and implications for lithospheric evolution. J. Geophys. Res. 88, 6455-6468.
    • Xu, Y., Roecker, S.W., Wei, R., Zhang, W., Wei, B., 2006. Analysis of seismic activity in the crust from earthquake relocation in the Central Tien Shan. Bull. Seismol. Soc. Am. 96, 737-744.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article