Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Williams, Rebecca J.; Pitto-Barry, Anaïs; Kirby, Nigel; Dove, Andrew P.; O’Reilly, Rachel K. (2016)
Publisher: American Chemical Society
Journal: Macromolecules
Languages: English
Types: Article
Subjects: QD, QH, Article
The synthesis of cyclic amphiphilic graft copolymers with a hydrophobic polycarbonate backbone and hydrophilic poly(N-acryloylmorpholine) (PNAM) side arms via a combination of ring-opening polymerization (ROP), cyclization via copper-catalyzed azide–alkyne cycloaddition (CuAAC), and reversible addition–fragmentation chain transfer (RAFT) polymerization is reported. The ability of these cyclic graft copolymers to form unimolecular micelles in water is explored using a combination of light scattering, small-angle X-ray scattering (SAXS), and cryogenic transmission electron microscopy (cryoTEM) analyses, where particle size was found to increase with increasing PNAM arm length. Further analysis revealed differences in the solution conformations, loading capabilities, and morphologies of the cyclic graft copolymers in comparison to equivalent linear graft copolymer unimolecular micelle analogues. Furthermore, the cyclic and linear graft copolymers were found to exhibit significantly different cloud point temperatures. This study highlights how subtle changes in polymer architecture (linear graft copolymer versus cyclic graft copolymer) can dramatically influence a polymer’s nanostructure and its properties.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • (1) Gregory, A.; Stenzel, M. H. Complex polymer architectures via RAFT polymerization: From fundamental process to extending the scope using click chemistry and nature's building blocks. Prog. Polym.
    • Sci. 2012, 37, 38−105.
    • (2) Hadjichristidis, N.; Iatrou, H.; Pitsikalis, M.; Mays, J. Macromolecular architectures by living and controlled/living polymerizations. Prog. Polym. Sci. 2006, 31, 1068−1132.
    • (3) Hirao, A.; Goseki, R.; Ishizone, T. Advances in Living Anionic Polymerization: From Functional Monomers, Polymerization Systems, to Macromolecular Architectures. Macromolecules 2014, 47, 1883− 1905.
    • (4) Blencowe, A.; Tan, J. F.; Goh, T. K.; Qiao, G. G. Core crosslinked star polymers via controlled radical polymerisation. Polymer 2009, 50, 5−32.
    • (5) Deng, Y.; Zhang, S.; Lu, G.; Huang, X. Constructing well-defined star graft copolymers. Polym. Chem. 2013, 4, 1289−1299.
    • (6) Khanna, K.; Varshney, S.; Kakkar, A. Miktoarm star polymers: advances in synthesis, self-assembly, and applications. Polym. Chem.
    • (7) England, R. M.; Rimmer, S. Hyper/highly-branched polymers by radical polymerisations. Polym. Chem. 2010, 1, 1533−1544.
    • (8) Gao, H.; Matyjaszewski, K. Synthesis of functional polymers with controlled architecture by CRP of monomers in the presence of crosslinkers: From stars to gels. Prog. Polym. Sci. 2009, 34, 317−350.
    • (9) Voit, B. I.; Lederer, A. Hyperbranched and Highly Branched Polymer ArchitecturesSynthetic Strategies and Major Characterization Aspects. Chem. Rev. 2009, 109, 5924−5973.
    • (10) Zhu, X.; Zhou, Y.; Yan, D. Influence of branching architecture on polymer properties. J. Polym. Sci., Part B: Polym. Phys. 2011, 49, 1277−1286.
    • (11) Carlmark, A.; Hawker, C.; Hult, A.; Malkoch, M. New methodologies in the construction of dendritic materials. Chem. Soc.
    • Rev. 2009, 38, 352−362.
    • (12) Inoue, K. Functional dendrimers, hyperbranched and star polymers. Prog. Polym. Sci. 2000, 25, 453−571.
    • (13) Soliman, G. M.; Sharma, A.; Maysinger, D.; Kakkar, A.
    • Dendrimers and miktoarm polymers based multivalent nanocarriers for efficient and targeted drug delivery. Chem. Commun. 2011, 47, 9572−9587.
    • (14) Gonzalez-Burgos, M.; Latorre-Sanchez, A.; Pomposo, J. A.
    • Advances in single chain technology. Chem. Soc. Rev. 2015, 44, 6122− 6142.
    • (15) Altintas, O.; Barner-Kowollik, C. Single-Chain Folding of Synthetic Polymers: A Critical Update. Macromol. Rapid Commun.
    • (16) Lyon, C. K.; Prasher, A.; Hanlon, A. M.; Tuten, B. T.; Tooley, C. A.; Frank, P. G.; Berda, E. B. A brief user's guide to single-chain nanoparticles. Polym. Chem. 2015, 6, 181−197.
    • (17) Hansell, C. F.; Lu, A.; Patterson, J. P.; O'Reilly, R. K. Exploiting the tetrazine-norbornene reaction for single polymer chain collapse.
    • Nanoscale 2014, 6, 4102−4107.
    • (18) Fox, M. E.; Szoka, F. C.; Frećhet, J. M. J. Soluble Polymer Carriers for the Treatment of Cancer: The Importance of Molecular Architecture. Acc. Chem. Res. 2009, 42, 1141−1151.
    • (19) Gao, H. Development of Star Polymers as Unimolecular Containers for Nanomaterials. Macromol. Rapid Commun. 2012, 33, 722−734.
    • (20) Gillies, E. R.; Frećhet, J. M. J. Dendrimers and dendritic polymers in drug delivery. Drug Discovery Today 2005, 10, 35−43.
    • (21) Mai, Y.; Eisenberg, A. Self-assembly of block copolymers. Chem.
    • Soc. Rev. 2012, 41, 5969−5985.
    • (22) Feng, C.; Li, Y.; Yang, D.; Hu, J.; Zhang, X.; Huang, X. Welldefined graft copolymers: from controlled synthesis to multipurpose applications. Chem. Soc. Rev. 2011, 40, 1282−1295.
    • (23) Rzayev, J. Molecular Bottlebrushes: New Opportunities in Nanomaterials Fabrication. ACS Macro Lett. 2012, 1, 1146−1149.
    • (24) Sheiko, S. S.; Sumerlin, B. S.; Matyjaszewski, K. Cylindrical molecular brushes: Synthesis, characterization, and properties. Prog.
    • Polym. Sci. 2008, 33, 759−785.
    • (25) Uhrig, D.; Mays, J. Synthesis of well-defined multigraft copolymers. Polym. Chem. 2011, 2, 69−76.
    • (26) Hadjichristidis, N.; Roovers, J. Conformation of poly(isoprenegstyrene) in dilute solution. J. Polym. Sci., Polym. Phys. Ed. 1978, 16, 851−858.
    • (27) Pispas, S.; Hadjichristidis, N.; Mays, J. W. Micellization of Model Graft Copolymers of the H and π Type in Dilute Solution.
    • Macromolecules 1996, 29, 7378−7385.
    • (28) Pitsikalis, M.; Woodward, J.; Mays, J. W.; Hadjichristidis, N.
    • Macromolecules 1997, 30, 5384−5389.
    • (29) Price, C.; Woods, D. Light-scattering study of micelle formation by polystyrene-g-polyisoprene graft copolymers. Polymer 1974, 15, 389−392.
    • (30) Tuzar, Z.; Kratochvil, P.; Prochaźka, K.; Contractor, K.; Hadjichristidis, N. Solution behavior of a graft copolymer in selective solvents for its backbone or grafts. Makromol. Chem. 1989, 190, 2967− 2973.
    • (31) Jia, Z.; Monteiro, M. J. Cyclic polymers: Methods and strategies.
    • J. Polym. Sci., Part A: Polym. Chem. 2012, 50, 2085−2097.
    • (32) Kricheldorf, H. R. Cyclic polymers: Synthetic strategies and physical properties. J. Polym. Sci., Part A: Polym. Chem. 2010, 48, 251− 284.
    • (33) Laurent, B. A.; Grayson, S. M. Synthetic approaches for the preparation of cyclic polymers. Chem. Soc. Rev. 2009, 38, 2202−2213.
    • (34) Williams, R. J.; Dove, A. P.; O'Reilly, R. K. Self-assembly of cyclic polymers. Polym. Chem. 2015, 6, 2998−3008.
    • (35) Yamamoto, T.; Tezuka, Y. Topological polymer chemistry: a cyclic approach toward novel polymer properties and functions. Polym.
    • Chem. 2011, 2, 1930−1941.
    • (36) Yamamoto, T.; Tezuka, Y. Cyclic polymers revealing topology effects upon self-assemblies, dynamics and responses. Soft Matter 2015, 11, 7458−7468.
    • (37) Cortez, M. A.; Godbey, W. T.; Fang, Y.; Payne, M. E.; Cafferty, B. J.; Kosakowska, K. A.; Grayson, S. M. The Synthesis of Cyclic Poly(ethylene imine) and Exact Linear Analogues: An Evaluation of Gene Delivery Comparing Polymer Architectures. J. Am. Chem. Soc.
    • (38) Honda, S.; Yamamoto, T.; Tezuka, Y. Topology-Directed Control on Thermal Stability: Micelles Formed from Linear and Cyclized Amphiphilic Block Copolymers. J. Am. Chem. Soc. 2010, 132, 10251−10253.
    • (39) Honda, S.; Yamamoto, T.; Tezuka, Y. Tuneable enhancement of the salt and thermal stability of polymeric micelles by cyclized amphiphiles. Nat. Commun. 2013, 4, 1574.
    • (40) Wang, C. E.; Stayton, P. S.; Pun, S. H.; Convertine, A. J.
    • Polymer nanostructures synthesized by controlled living polymerization for tumor-targeted drug delivery. J. Control. Release 2015, 219, 345−354.
    • (41) Chen, B.; Jerger, K.; Frećhet, J. M. J.; Szoka, F. C., Jr. The influence of polymer topology on pharmacokinetics: Differences between cyclic and linear PEGylated poly(acrylic acid) comb polymers. J. Control. Release 2009, 140, 203−209.
    • (42) Nasongkla, N.; Chen, B.; Macaraeg, N.; Fox, M. E.; Frećhet, J.
    • M. J.; Szoka, F. C. Dependence of Pharmacokinetics and Biodistribution on Polymer Architecture: Effect of Cyclic versus Linear Polymers. J. Am. Chem. Soc. 2009, 131, 3842−3843.
    • (43) Wei, H.; Wang, C. E.; Tan, N.; Boydston, A. J.; Pun, S. H. ATRP Synthesis of Sunflower Polymers Using Cyclic Multimacroinitiators.
    • ACS Macro Lett. 2015, 4, 938−941.
    • (44) Xu, J.; Ye, J.; Liu, S. Synthesis of Well-Defined Cyclic Poly(Nisopropylacrylamide) via Click Chemistry and Its Unique Thermal Phase Transition Behavior. Macromolecules 2007, 40, 9103−9110.
    • (45) Ye, J.; Xu, J.; Hu, J.; Wang, X.; Zhang, G.; Liu, S.; Wu, C.
    • Macromolecules 2008, 41, 4416−4422.
    • (46) Lahasky, S. H.; Hu, X.; Zhang, D. Thermoresponsive Poly(α- peptoid)s: Tuning the Cloud Point Temperatures by Composition and Architecture. ACS Macro Lett. 2012, 1, 580−584.
    • (47) Liu, B.; Wang, H.; Zhang, L.; Yang, G.; Liu, X.; Kim, I. A facile approach for the synthesis of cyclic poly(N-isopropylacrylamide) based on an anthracene-thiol click reaction. Polym. Chem. 2013, 4, 2428−2431.
    • (48) Qiu, X.-P.; Tanaka, F.; Winnik, F. M. Temperature-Induced P h a s e T r a n s i t i o n o f W e l l - D e f i n e d C y c l i c P o l y ( N - isopropylacrylamide)s in Aqueous Solution. Macromolecules 2007, 40, 7069−7071.
    • (49) Qiu, X.-P.; Winnik, F. M. Effect of Topology on the Properties of Poly(N-isopropylacrylamide) in Water and in Bulk. Macromol.
    • Symp. 2009, 278, 10−13.
    • (50) Satokawa, Y.; Shikata, T.; Tanaka, F.; Qiu, X.-p.; Winnik, F. M.
    • Macromolecules 2009, 42, 1400−1403.
    • (51) Yuan, Y.-Y.; Du, J.-Z.; Wang, J. Two consecutive click reactions as a general route to functional cyclic polyesters. Chem. Commun.
    • (52) Williams, R. J.; O'Reilly, R. K.; Dove, A. P. Degradable graft copolymers by ring-opening and reverse addition-fragmentation chain transfer polymerization. Polym. Chem. 2012, 3, 2156−2164.
    • (53) Wang, Y.; Zhang, R.; Xu, N.; Du, F.-S.; Wang, Y.-L.; Tan, Y.-X.; Ji, S.-P.; Liang, D.-H.; Li, Z.-C. Reduction-Degradable Linear Cationic Polymers as Gene Carriers Prepared by Cu(I)-Catalyzed AzideAlkyne Cycloaddition. Biomacromolecules 2011, 12, 66−74.
    • (54) Withey, A. B. J.; Chen, G.; Nguyen, T. L. U.; Stenzel, M. H.
    • Macromolecular Cobalt Carbonyl Complexes Encapsulated in a ClickCross-Linked Micelle Structure as a Nanoparticle To Deliver Cobalt Pharmaceuticals. Biomacromolecules 2009, 10, 3215−3226.
    • (55) Laurent, B. A.; Grayson, S. M. An Efficient Route to WellDefined Macrocyclic Polymers via “Click” Cyclization. J. Am. Chem.
    • Soc. 2006, 128, 4238−4239.
    • (56) Patterson, J. P.; Robin, M. P.; Chassenieux, C.; Colombani, O.; O'Reilly, R. K. The analysis of solution self-assembled polymeric nanomaterials. Chem. Soc. Rev. 2014, 43, 2412−2425.
    • (57) Jakes,̌ J. Collect. Czech. Chem. Commun. 1995, 60, 1781−1797.
    • (58) Guinier, A.; Fournet, G. Small-Angle Scattering of X-Rays; John Wiley and Sons: New York, 1955.
    • (59) Glatter, O.; Kratky, O. Small-Angle X-ray Scattering; Academic Press: London, 1982; pp 155−156.
    • (60) Kline, S. Reduction and analysis of SANS and USANS data using IGOR Pro. J. Appl. Crystallogr. 2006, 39, 895−900.
    • (61) Petoukhov, M. V.; Franke, D.; Shkumatov, A. V.; Tria, G.; Kikhney, A. G.; Gajda, M.; Gorba, C.; Mertens, H. D. T.; Konarev, P.
    • V.; Svergun, D. I. New developments in the ATSAS program package for small-angle scattering data analysis. J. Appl. Crystallogr. 2012, 45, 342−350.
    • (62) Bartlett, P.; Ottewill, R. H. A neutron scattering study of the structure of a bimodal colloidal crystal. J. Chem. Phys. 1992, 96, 3306− 3318.
    • (63) Higgins, J. S.; Benoît, H. C. In Polymers and Neutron Scattering; Oxford series on neutron scattering in condensed matter 8; Oxford Science Publications: 1996; pp 158−161.
    • (64) Glatter, O.; Kratky, O. In Small-angle X-ray Scattering; Academic Press: London, 1982; pp 403−407.
    • (65) Wright, D. B.; Patterson, J. P.; Pitto-Barry, A.; Lu, A.; Kirby, N.; Gianneschi, N. C.; Chassenieux, C.; Colombani, O.; O'Reilly, R. K.
    • The Copolymer Blending Method: A New Approach for Targeted Assembly of Micellar Nanoparticles. Macromolecules 2015, 48, 6516− 6522.
    • (66) Sawada, H.; Kawase, T.; Ikematsu, Y.; Ishii, Y.; Oue, M.; Hayakawa, Y. Synthesis and surfactant properties of novel fluoroalkylated amphiphilic oligomers. Chem. Commun. 1996, 179−180.
    • (67) Sawada, H.; Takahashi, K.; Mugisawa, M.; Oya, T.; Ogino, S.-i.
    • Thermoresponsive Characteristics of Fluoroalkyl End-Capped Cooligomers in Aqueous Solutions and on the Poly(methyl methacrylate) Film Surface. Langmuir 2007, 23, 11947−11950.
    • (68) Theato, P.; Sumerlin, B. S.; O'Reilly, R. K.; Epps, T. H., III Stimuli responsive materials. Chem. Soc. Rev. 2013, 42, 7055−7056.
    • (69) Gibson, M. I.; O'Reilly, R. K. To aggregate, or not to aggregate? considerations in the design and application of polymeric thermallyresponsive nanoparticles. Chem. Soc. Rev. 2013, 42, 7204−7213.
    • (70) Ieong, N. S.; Hasan, M.; Phillips, D. J.; Saaka, Y.; O'Reilly, R. K.; Gibson, M. I. Polymers with molecular weight dependent LCSTs are essential for cooperative behaviour. Polym. Chem. 2012, 3, 794−799.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article