LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Begley, Stephen Patrick (2016)
Languages: English
Types: Doctoral thesis
Subjects: QC0680

Classified by OpenAIRE into

arxiv: Physics::Optics, Physics::Plasma Physics, Physics::Accelerator Physics
In this work, I detail the reconstruction and upgrades performed on the axial cavity ion trap in the ITCM group at the university of Sussex, and the measurement of the coupling of multiple ions to the cavity mode. This enables the optimal coupling between the ions and the cavity by adjusting the ions position in the radial and axial positions. This covers new ground in extending the optimal coupling beyond two ions which is of great importance for experiments with several ions in an optical cavity.\ud The thesis outlines the background theory of light-matter interaction and cavity QED, before describing the physical ion trap hardware and its assembly. A description of the laser and cavity systems is provided, including techniques for locking both to stable references. A number of novel measurement techniques for measuring and maximising the stability of the ions and cavities are presented, including micromotion minimisation, spectroscopy, magnetic field compensation using the ground state Hanle effect, and Raman spectroscopy. These techniques enable the measurement of crucial parameters of the atomic transitions and the cavity. The work culminates in a description of the optimisation of the coupling between ion strings and the cavity first by adjusting the radial trap position by means of variable capacitors attached to RF electrodes, and then axially by means of adjusting the endcap potentials and therefore the spacing between ions to obtain the greatest localisation while still positioning the ions close to the antinodes of the cavity field.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 3.2 Trapping electronics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.2.1 The RF trap drive electronics . . . . . . . . . . . . . . . . . . . . . . 34 3.2.2 Non-RF electronics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.2.3 The magnetic eld coils . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.3 Trap optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.3.1 The uorescence photodetection systems . . . . . . . . . . . . . . . . 43
    • 4 Lasers and Cavities 45 4.1 Experimental lasers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.1.1 AOM control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.2 Laser locking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.2.1 PID feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.2.2 The wavemeter lock . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.2.3 The transfer cavity lock . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.3 Cavity and laser locking with the Pound-Drever-Hall technique . . . . . . . 53 4.4 The stable Cs reference cavity . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.5 The experimental cavity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
    • [1] R. P. Feynmann. Simulating Physics with Computers. Int. J. Theor. Phys. 21 : 467{ 488 , 1982.
    • [2] D. Deutsch. Quantum theory, the Church-Turing principle and the universal quantum computer. Proc. R. Soc. A. 400 : 97{117, 1985.
    • [3] P. W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26 : 1484{1509, 1997.
    • [4] D. S. Abrams. Simulation of Many-Body Fermi Systems on a Universal Quantum Computer. Phys. Rev. Lett. 79 : 2586{2589, 1997.
    • [5] I. Kassala, S. P. Jordan, P. J. Love, M. Mohsenia, and A. Aspuru-Guzika. Polynomialtime quantum algorithm for the simulation of chemical dynamics. Proc. Natl. Acad. Sci. U.S.A. 105 : 18681{18686, 2008.
    • [6] H. J. Briegel, T. Calarco, D. Jaksch, J. I. Cirac, and P. Zoller. Quantum computing with neutral atoms. J. Mod. Opt. 47 : 415{451, 2000.
    • [7] Y. Makhlin, G. Schon, A. Shnirman. Quantum-state engineering with Josephson junction devices. Rev. Mod. Phys. 73 : 357{400, 2001.
    • [8] D. Loss and D. P. DiVincenzo. Quantum computation with quantum dots. Phys. Rev. A 57 : 120{126, 1998.
    • [9] P. F. Herskind, A. Dantan, J. P. Marler, M. Albert, and M. Drewsen. Realization of collective strong coupling with ion Coulomb crystals in an optical cavity. Nature Physics 5 : 494{498, 2009.
    • [10] W. Lange. Cavity QED: Strength in numbers. Nature Physics 5 : 455{456, 2009.
    • [11] J. I. Cirac and P. Zoller. Quantum Computations with Cold Trapped Ions. Phys. Rev. Lett. 74 : 4091{4094, 1995.
    • [12] D. P. DiVincenzo. The Physical Implementation of Quantum Computation Fortschr. Phys. 48 : 9{11, 771{783, 2000.
    • [13] T. Pellizzari, S. A. Gardiner, J. I. Cirac, and P. Zoller. Decoherence, Continuous Observation, and Quantum Computing: A Cavity QED Model. Phys. Rev. Lett. 75 : 3788{3791, 1995.
    • [14] P W. Shor and J. Preskill. Simple Proof of Security of the BB84 Quantum Key Distribution Protocol. Phys. Rev. Lett. 85, 441{444, 2000.
    • [15] P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger. Experimental one-way quantum computing. Nature 434, 169{176, 2005.
    • [16] H. J. Briegel and R. Raussendorf. Persistent Entanglement in Arrays of Interacting Particles. Phys. Rev. Lett. 86 : 910{913, 2001.
    • [17] M. Hein, J. Eisert, and H. J. Briegel. Multiparty entanglement in graph states. Phys. Rev. A 69 : 062311{062331, 2004.
    • [18] R. Raussendorf, D. E. Browne, and H. J. Briegel. Measurement-based quantum computation on cluster states. Phys. Rev. A, 68 : 022312{022344, 2003.
    • [19] Y. Li, X. Li, and Y. Nie. Generation of a Five-Atom Cluster State in Cavity QED. Int. J. Theor. Phys. 52 : 84{87, 2013.
    • [20] Y. Li and Y. Nie. Preparation of Six-Atom Cluster State via Cavity Quantum Electrodynamics. Int. J. Theor. Phys. 52 : 788{792, 2013.
    • [21] A. Kuhn, M. Hennrich, and G. Rempe. Deterministic single-photon source for distributed quantum networking. Phys. Rev. Lett., 89 067901{067905, 2002.
    • [22] J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble. Deterministic generation of single photons from one atom trapped in a cavity. Science, 303 : 1992{1994, 2004.
    • [24] C. Russo, H. G. Barros, A. Stute. F. Dubin, E. S. Phillips, T. Monz, T. E. Northup, C. Becher, T. Salzburger, H. Ritsch, P. O. Schmidt, and R. Blatt. Raman spectroscopy of a single ion coupled to a high- nesse cavity. Appl Phys B 95 : 205{212, 2009.
    • [25] M. Albert, J. P. Marler, P. F. Herskind, A. Dantan, and M. Drewsen. Collective strong coupling between ion Coulomb crystals and an optical cavity eld : Theory and experiment. Phys. Rev. A, 85 : 023818{023831, 2012.
    • [26] B. Casabone, A. Stute, K. Friebe, B. Brandstatter, K. Schuppert, R. Blatt, and T. E. Northup. Heralded Entanglement of Two Ions in an Optical Cavity. Phys. Rev. Lett. 111 : 100505{100510, 2013.
    • [27] A. Kuhn and D. Ljunggren, Cavity-based single-photon sources, Contemporary Physics, 51 : 289{313, 2010.
    • [28] J. R. Kuklinski, U. Gaubatz, F. T. Hioe, and K. Bergmann. Adiabatic population transfer in a three-level system driven by delayed laser pulses. Phys. Rev. A, 40: 6741{6744, 1989.
    • [29] L. S. Brown and G. Gabrielse. Geonium theory : Physics of a single electron or ion in a Penning trap. Rev. Mod. Phys. 58 : 233{311, 1986.
    • [36] R. Rau endorf. Measurement-based quantum computation with cluster states. PhD Thesis, Ludwig-Maximilians-Universitat Munchen, 2003.
    • [49] R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward. Laser phase and frequency stabilization using an optical resonator. Appl. Phys B, 31 : 97{105, 1983.
    • [50] D. F. V. James. Quantum dynamics of cold trapped ions with application to quantum computation. Appl. Phys B, 66 : 181{190, 1998.
    • [51] D. J. Berkeland, J. D. Miller, J. C. Bergquist, W. M. Itano, and D. J. Wineland. Minimization of ion micromotion in a Paul trap. J. Appl. Phys, 83 : 5026{5033, 1998.
    • [52] W. Hanle. The magnetic in uence on the polarization of resonance uorescence. Z. Physik 30 : 93{99, 1924
    • [53] J. Alnis, K. Blushs, M. Auzinsh, S. Kennedy, N. Shafer-Ray, and E. R. I. Abraham. The Hanle e ect and level crossing spectroscopy in Rb vapour under strong laser excitation. J. Phys. B: At. Mol. Opt. Phys. 36 : 1161{1173, 2003.
    • [54] D. W. Preston. Doppler-free saturated absorption: Laser spectroscopy. Am. J. Phys. 64 : 1432{1436, 1996.
    • [55] G. Janik, W. Nagourney, and H. Dehmelt. Doppler-free optical spectroscopy on the Ba+ mono-ion oscillator. J. Opt. Soc. Am. B, 2 : 1251{1257, 1985.
    • [56] M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther. Deterministic coupling of single ions to an optical cavity. Appl. Phys. B 76 : 125{128, 2003.
  • No related research data.
  • No similar publications.

Share - Bookmark

Download from

Cite this article