LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Cuenca, Jerome A. (2015)
Languages: English
Types: Doctoral thesis
Subjects: TK
The contribution in this thesis is a novel application of microwave cavity perturbation in\ud the characterisation of the fundamental properties of powders.\ud This thesis shows that microwave cavity perturbation is very good at characterising the\ud magnetite to maghemite phase change through dielectric and magnetic measurements.\ud This is very important in material science since conventional techniques, though powerful\ud and are able to verify the change, use complex methods. Quantifying di�erent forms of\ud magnetite and maghemite is important for magnetic drug delivery and EMI absorbers.\ud This thesis shows that microwave cavity perturbation can be used to measure the impurities\ud of nanodiamonds through simple dielectric measurements. This is important because\ud other methods again may involve complex systems, while microwave cavity perturbation\ud can provide a fast, sensitive �gure of merit. Nanodiamonds are used in drug delivery and\ud bio-labelling which requires accurate surface characterisation.\ud This thesis shows that microwave cavity perturbation can measure in-situ temperature dependent\ud and photocatalytic responses in materials such as titania using a novel correction\ud procedure. Microwave cavity perturbation has not been used with this correction procedure\ud before which simpli�es the system when monitoring systematic errors. This work is\ud important as it shows how simple microwave cavity perturbation systems can provide insight\ud to thermally activated processes and veri�cation of some photocatalytic mechanisms\ud in powders for use in pigmentation and light induced drug delivery.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 2 Theory: Microwave Cavity Perturbation 31 2.1 Principle of MCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.1.1 Simpli ed MCP Equation . . . . . . . . . . . . . . . . . . . . . . . . 33 2.1.2 Depolarising and Demagnetising MCP Equation . . . . . . . . . . . 34 2.1.3 Cavity Wave Equations . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.1.4 TM Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.1.5 TE Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.2 Resonator Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.2.1 Cavity (ZR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 2.2.2 Antennas and Cross Coupling (ZC(!) and j!Lkl) . . . . . . . . . . . 49 2.2.3 Impedance Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 2.2.4 Scattering Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 51 2.2.5 Resonance Asymmetry . . . . . . . . . . . . . . . . . . . . . . . . . . 53 2.3 Cavity Measurement Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 58 2.3.1 Coupling Antennas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 2.3.2 VNA to provide S-Parameters . . . . . . . . . . . . . . . . . . . . . . 58 2.3.3 Errors in measurement . . . . . . . . . . . . . . . . . . . . . . . . . . 60 2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
    • 3 Methodology: Microwave Cavity Systems 63 3.1 Methods to measure microwave magnetism . . . . . . . . . . . . . . . . . . 64 3.2 A simpler approach: Multi-mode MCP . . . . . . . . . . . . . . . . . . . . . 65 3.3 Design of Cyl- and Cyl-" Systems . . . . . . . . . . . . . . . . . . . . . . . 66 3.3.1 Dielectric Measurement Modes . . . . . . . . . . . . . . . . . . . . . 67 3.3.2 Magnetic Measurement Modes . . . . . . . . . . . . . . . . . . . . . 68 3.3.3 Breaking Degeneracy for Magnetic Modes . . . . . . . . . . . . . . . 69 3.3.4 Calibration and Gnmp of Cyl- . . . . . . . . . . . . . . . . . . . . . 71 3.3.5 Calibration and Gnmp of Cyl-" . . . . . . . . . . . . . . . . . . . . . 72 3.3.6 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 3.4 Experiment: Extraction of Magnetic Properties . . . . . . . . . . . . . . . . 75 3.4.1 Aims and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 3.4.2 Measured Resonant Frequency and Quality Factor . . . . . . . . . . 75 3.4.3 Cavity Calibration for Permittivity and Permeability . . . . . . . . . 77 3.4.4 Samples and Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 78 3.4.5 Permittivity Measurements . . . . . . . . . . . . . . . . . . . . . . . 79 3.4.6 Permeability Measurements . . . . . . . . . . . . . . . . . . . . . . . 82 3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
    • 4 Methodology: Microwave Cavity for Temperature Dependent Properties 85 4.1 Measuring temperature dependent dielectric and magnetic properties . . . . 86 4.2 A Novel Approach: Using Nodal modes for Temperature Correction . . . . 87 4.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 4.3.1 Temperature Dependence of Frequency . . . . . . . . . . . . . . . . 88 4.3.2 Temperature Dependent Bandwidth . . . . . . . . . . . . . . . . . . 89 4.3.3 Nodal Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 4.3.4 Method for Applying Correction . . . . . . . . . . . . . . . . . . . . 92 4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 4.4.1 Aims and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 4.4.2 Node Perturbation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 4.4.3 Ambient Temperature Drift . . . . . . . . . . . . . . . . . . . . . . . 95 4.4.4 Empty Temperature Ramp . . . . . . . . . . . . . . . . . . . . . . . 96 4.4.5 Sample Holder Ramps . . . . . . . . . . . . . . . . . . . . . . . . . . 99 4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
    • 5 Study: Microwave Characterisation of the Fe3O4 to -Fe2O3 Transition 103 5.1 Synthesis and Characterisation of -Fe2O3 . . . . . . . . . . . . . . . . . . . 104 5.2 A Novel Approach: MCP to measure oxidation state . . . . . . . . . . . . . 105 5.3 Experiment: MCP measurements of annealed Fe3O4 . . . . . . . . . . . . . 108 5.3.1 Aims and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 5.3.2 Samples and Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 108 5.3.3 XRD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 5.3.4 XPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 5.3.5 VSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 5.3.6 MCP Permittivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 5.3.7 MCP Permeability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 5.4 Experiment: MCP Temperature Dependent Mechanisms of Fe3O4 . . . . . 123 5.4.1 Aims and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 5.4.2 Samples and Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 124 5.4.3 Temperature dependent MCP permittivity of Fe3O4 . . . . . . . . . 124 5.4.4 Temperature dependent permeability of Fe3O4 . . . . . . . . . . . . 127 5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
    • 6 Study: Microwave Determination of Impurities in Nanodiamond 133 6.1 Characterisation of Nanodiamond Purity . . . . . . . . . . . . . . . . . . . . 134 6.2 A Novel approach: MCP to measure impurities . . . . . . . . . . . . . . . . 135 6.3 Experiment: Determination of impurities with MCP . . . . . . . . . . . . . 136 6.3.1 Aims and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 6.3.2 Samples and Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 136 6.3.3 Raman Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 6.3.4 XRD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 6.3.5 FESEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 6.3.6 MCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 6.4 Experiment: Frequency Dependence and Loss Mechanisms . . . . . . . . . . 145 6.4.1 Aims and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 6.4.2 Analysis of MBCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 6.4.3 Samples and Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 147 6.4.4 Broadband MCP and MBCP . . . . . . . . . . . . . . . . . . . . . . 149 6.4.5 Microwave Loss Mechanism . . . . . . . . . . . . . . . . . . . . . . . 151 6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
    • 7 Study: Photo-reactivity of Titania Powders 155 7.1 Characterising photo-reactivity . . . . . . . . . . . . . . . . . . . . . . . . . 156 7.2 A Novel approach: Improved Nodal MCP Method . . . . . . . . . . . . . . 158 7.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 7.3.1 Photo-excitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 7.3.2 Carrier Lifetime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 7.4 Experiment: Photo-reactivity of Anatase and Rutile . . . . . . . . . . . . . 161 7.4.1 Aims and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 7.4.2 Samples and procedure . . . . . . . . . . . . . . . . . . . . . . . . . 161 7.4.3 UV-VIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 7.4.4 MCP Photo-excitation . . . . . . . . . . . . . . . . . . . . . . . . . . 164 7.4.5 MCP - Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 7.4.6 Trapped charges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 7.4.7 Lifetime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
    • [2] C. Y. Haw, F. Mohamed, C. H. Chia, S. Radiman, S. Zakaria, N. M. Huang, and H. N. Lim, \Hydrothermal synthesis of magnetite nanoparticles as MRI contrast agents," Ceram. Int., vol. 36, pp. 1417{1422, Mar. 2010.
    • [3] N. P. Mart nez Vera, R. Schmidt, K. Langer, I. Zlatev, R. Wronski, E. Auer, D. Havas, M. Windisch, H. Von Briesen, S. Wagner, J. Stab, M. Deutsch, C. Pietrzik, F. Fazekas, and S. Ropele, \Tracking of magnetite labeled nanoparticles in the rat brain using MRI," PLoS One, vol. 9, pp. 20{24, Mar. 2014.
    • [4] S. Bucak, B. Yavuzturk, and A. D. Sezer, \Magnetic nanoparticles: synthesis, surface modi cations and application in drug delivery," in Recent Adv. Nov. Drug Carr. Syst. (A. D. Sezer, ed.), ch. 7, pp. 165{200, InTech, 2012.
    • [5] M. F. Silva, A. A. Winkler Hechenleitner, D. M. F. de Oliveira, M. Agueros, R. Pen~alva, J. M. Irache, and E. A. G. Pineda, \Optimization of maghemite-loaded plga nanospheres for biomedical applications," Eur. J. Pharm. Sci., vol. 49, pp. 343{51, Jun. 2013.
    • [6] V. Dediu, E. Arisi, I. Bergenti, A. Riminucci, M. Murgia, and G. Ruani, \Magnetite lms grown directly on organic semiconductor layers," in IEEE Int. Magn. Conf., vol. 184, p. 374, May. 2006.
    • [7] Z. Wang, L. Wu, J. Zhou, W. Cai, B. Shen, and Z. Jiang, \Magnetite nanocrystals on multiwalled carbon nanotubes as a synergistic microwave absorber," J. Phys. Chem. C, vol. 117, pp. 5446{5452, Mar. 2013.
    • [8] R. M. Cornell and U. Schwertmann, The Iron Oxides. Wiley, 2003.
    • [9] S. E. Lapinsky and A. C. Easty, \Electromagnetic interference in critical care," J. Crit. Care, vol. 21, pp. 267{270, Sep. 2006.
    • [10] I. H. Hahn, D. Schnadower, R. J. Dakin, and L. S. Nelson, \Cellular phone interference as a cause of acute epinephrine poisoning," Ann. Emerg. Med., vol. 46, pp. 298{299, Sep. 2005.
    • [17] I. Kong, S. H. Ahmad, M. H. Abdullah, D. Hui, A. N. Yuso , and D. Puryanti, \Magnetic and microwave absorbing properties of magnetite-thermoplastic natural rubber nanocomposites," J. Magn. Magn. Mater., vol. 322, pp. 3401{3409, Nov. 2010.
    • Y. Chen, Y. Zhang, G. Xiao, T. Wang, Y. Ma, C. Zhu, and P. Gao, \Controlled synthesis and shape-dependent electromagnetic wave absorption characteristics of porous Fe3O4 submicro particles," Sci. China Physics, Mech. Astron., vol. 55, pp. 25{32, Dec. 2011.
    • H. S. Cho and S. S. Kim, \M-hexaferrites with planar magnetic anisotropy and their application to high-frequency microwave absorbers," IEEE Trans. Magn., vol. 35, pp. 3151{3153, Sep. 1999.
    • S. Padhy, S. Sanyal, A. Bose, R. Chatterjee, and R. S. Meena, \Development and characterisation of (Mg, Mn) U-type microwave absorbing materials and its application in radar cross sections reduction," IET Microwaves, Antennas Propag., vol. 8, pp. 165{170, Feb.
    • S. Ozah and N. S. Bhattacharyya, \Nanosized barium hexaferrite in novolac phenolic resin as microwave absorber for X-band application," J. Magn. Magn. Mater., vol. 342, pp. 92{99, Apr. 2013.
    • [22] P. Chen, R. X. Wu, T. Zhao, F. Yang, and J. Q. Xiao, \Complex permittivity and permeability of metallic magnetic granular composites at microwave frequencies," J. Phys. D. Appl. Phys., vol. 38, pp. 2302{2305, Jul. 2005.
    • [23] L. Liu, Y. Duan, S. Liu, L. Chen, and J. Guo, \Microwave absorption properties of one thin sheet employing carbonyl-iron powder and chlorinated polyethylene," J. Magn. Magn. Mater., vol. 322, pp. 1736{1740, Dec. 2010.
    • [24] O. Akman, H. Kavas, A. Baykal, M. S. Toprak, A. Coruh, and B. Aktas, \Magnetic metal nanoparticles coated polyacrylonitrile textiles as microwave absorber," J. Magn. Magn. Mater., vol. 327, pp. 151{158, Sep. 2013.
    • [25] A. M. Gama, M. C. Rezende, and C. C. Dantas, \Dependence of microwave absorption properties on ferrite volume fraction in MnZn ferrite/rubber radar absorbing materials," J. Magn. Magn. Mater., vol. 323, pp. 2782{2785, Nov. 2011.
    • [26] D. Yuping, M. He, L. Xiaogang, L. Shunhua, and J. Zhijiang, \The microwave electromagnetic characteristics of manganese dioxide with di erent crystallographic structures," Phys. B Condens. Matter, vol. 405, pp. 1826{1831, Apr. 2010.
    • [27] W. Li, T. Wu, W. Wang, P. Zhai, and J. Guan, \Broadband patterned magnetic microwave absorber," J. Appl. Phys., vol. 116, pp. 044110{1{7, Jul. 2014.
    • [28] H. B. Zhang, L. W. Deng, P. H. Zhou, L. Zhang, D. M. Cheng, H. Y. Chen, D. F. Liang, and L. J. Deng, \Low frequency needlepoint-shape metamaterial absorber based on magnetic medium," J. Appl. Phys., vol. 113, Jan. 2013.
    • [29] W. Li, X. Qiao, Y. Luo, F. X. Qin, and H. X. Peng, \Magnetic medium broadband metamaterial absorber based on the coupling resonance mechanism," Appl. Phys. A Mater. Sci.
    • Process., vol. 115, pp. 229{234, Oct. 2014.
    • [30] A. Porch, D. Slocombe, and P. P. Edwards, \Microwave absorption in powders of small conducting particles for heating applications," Phys. Chem. Chem. Phys., vol. 15, pp. 2757{ 63, Feb. 2013.
    • [31] J. A. Pearce, J. R. Cook, P. J. Hoopes, and A. Giustini, \FEM numerical model study of heating in magnetic nanoparticles," in Proc. SPIE, vol. 7901, pp. 1{6, Feb. 2011.
    • [32] T. Motomura, K. Ueda, S. Ohtani, E. Hansen, L. Ji, K. Ito, K. Saito, Y. Sugita, and Y. Nose, \Evaluation of systemic external microwave hyperthermia for treatment of pleural metastasis in orthotopic lung cancer model," Oncol. Rep., vol. 24, pp. 591{598, Sep. 2010.
    • [33] S. N. Kale, R. Rajagopal, S. Arora, K. R. Bhayani, J. M. Rajwade, K. M. Paknikar, D. C. Kundaliya, and S. B. Ogale, \Microwave response of La0:7Sr0:3MnO3 nanoparticles for heating applications," J. Biomed. Nanotechnol., vol. 3, pp. 178{183, May. 2007.
    • [34] [35] [36] A. Hervault and N. T. K. Thanh, \Magnetic nanoparticle-based therapeutic agents for thermo-chemotherapy treatment of cancer," Nanoscale, vol. 6, pp. 11553{11573, Aug. 2014.
    • H. S. Huang and J. F. Hainfeld, \Intravenous magnetic nanoparticle cancer hyperthermia," Int. J. Nanomedicine, vol. 8, pp. 2521{2532, Jul. 2013.
    • S. Dutz and R. Hergt, \Magnetic particle hyperthermia - a promising tumour therapy?," Nanotechnology, vol. 25, p. 452001, Oct. 2014.
    • [37] J. L. Kirschvink, \Microwave absorption by magnetite: a possible mechanism for coupling nonthermal levels of radiation to biological systems," Bioelectromagnetics, vol. 17, no. 3, pp. 187{194, 1996.
    • [38] J. F. Bakker, M. M. Paulides, A. H. Westra, H. Schippers, and G. C. Van Rhoon, \Design and test of a 434 MHz multi-channel ampli er system for targeted hyperthermia applicators," Int. J. Hyperth., vol. 26, pp. 158{170, Jan. 2010.
    • [39] Y. Nikawa and F. Okada, \Selective heating for microwave hyperthermia using ferrimagnetic resonance," IEEE Trans. Magn., vol. 23, pp. 2431{2433, Sep. 1987.
    • [40] I. Santoso, T. S. Widodo, A. Susanto, and M. Tjokronagoro, \Spatial temperature pattern of a non-invasive 2.45 GHz microwave hyperthermia device," ARPN J. Eng. Appl. Sci., vol. 9, pp. 2131{2134, Nov. 2014.
    • [41] [42] [43] [44] [45] [46] [47] M. Converse, E. J. Bond, B. D. Van Veen, and S. C. Hagness, \A computational study of ultra-wideband versus narrowband microwave hyperthermia for breast cancer treatment," IEEE Trans. Microw. Theory Tech., vol. 54, pp. 2169{2180, May. 2006.
    • R. R. Shah, T. P. Davis, A. L. Glover, D. E. Nikles, and C. S. Brazel, \Impact of magnetic eld parameters and iron oxide nanoparticle properties on heat generation for use in magnetic hyperthermia," J. Magn. Magn. Mater., vol. 387, pp. 96{106, Mar. 2015.
    • T. K. Jain, M. A. Morales, S. K. Sahoo, D. L. Leslie-Pelecky, and V. Labhasetwar, \Iron oxide nanoparticles for sustained delivery of anticancer agents," Mol. Pharm., vol. 2, pp. 194{ 205, Apr. 2005.
    • Q. A. Pankhurst, J. Connolly, S. K. Jones, and J. Dobson, \Applications of magnetic nanoparticles in biomedicine," J. Phys. D. Appl. Phys., vol. 36, pp. R167{R181, Jun. 2003.
    • V. V. Mody, A. Cox, S. Shah, A. Singh, W. Bevins, and H. Parihar, \Magnetic nanoparticle drug delivery systems for targeting tumor," Appl. Nanosci., vol. 4, pp. 385{392, Apr. 2013.
    • R. Hergt, S. Dutz, and M. Roder, \E ects of size distribution on hysteresis losses of magnetic nanoparticles for hyperthermia," J. Phys. Condens. Matter, vol. 20, p. 385214, Aug. 2008.
    • A. Z. Wilczewska, K. Niemirowicz, K. H. Markiewicz, and H. Car, \Nanoparticles as drug delivery systems," Pharmacol. Reports, vol. 64, pp. 1020{1037, Dec. 2012.
    • S. Abdeen, \Diagnostics and treatment of metastatic cancers with magnetic nanoparticles," J. Nanomedine. Biotherapeutic Discov., vol. 3, Aug. 2013.
    • Dailey, and D. Bardenstein, \Cell uptake and in vitro toxicity of magnetic nanoparticles suitable for drug delivery," Mol. Pharm., vol. 6, pp. 1417{1428, May. 2009.
    • E.-J. Park, H. Umh, D.-H. Choi, M. Cho, W. Choi, S.-W. Kim, Y. Kim, and J.-H. Kim, \Magnetite- and maghemite-induced di erent toxicity in murine alveolar macrophage cells," Arch. Toxicol., vol. 88, pp. 1607{1618, Feb. 2014.
    • H. L. Karlsson, J. Gustafsson, P. Cronholm, and L. Moller, \Size-dependent toxicity of metal oxide particles-a comparison between nano- and micrometer size," Toxicol. Lett., vol. 188, pp. 112{118, Mar. 2009.
    • R. Grau-Crespo, A. Y. Al-Baitai, I. Saadoune, and N. H. De Leeuw, \Vacancy ordering and electronic structure of -Fe2O3 (maghemite): a theoretical investigation," J. Phys.
    • Condens. Matter, vol. 22, p. 255401, Jun. 2010.
    • C. J. Serna and M. P. Morales, \Maghemite ( -Fe2O3): A versatile magnetic colloidal material," in Surf. Colloid Sci. (E. Matijevic and M. Borkovec, eds.), vol. 17, pp. 27{81, Springer US, 2004.
    • A. U. Gehring, H. Fischer, M. Louvel, K. Kunze, and P. G. Weidler, \High temperature stability of natural maghemite: A magnetic and spectroscopic study," Geophys. J. Int., vol. 179, pp. 1361{1371, Sep. 2009.
    • Q. A. Acton, Issues in Earth Sciences, Geology, and Geophysics. ScholarlyEditions, 2012.
    • M. Chirita and I. Grozescu, \Fe2O3 - nanoparticles, physical properties and their photochemical and photoelectrochemical applications," Chem. Bull. Politeh. Univ. Timisoara, vol. 54, pp. 1{8, May. 2009.
    • A. S. Barnard, \Diamond standard in diagnostics: nanodiamond biolabels make their mark," Analyst, vol. 134, pp. 1751{64, Sep. 2009.
    • N. Mohan, Y.-K. Tzeng, L. Yang, Y.-Y. Chen, Y. Y. Hui, C.-Y. Fang, and H.-C. Chang, \Sub-20-nm uorescent nanodiamonds as photostable biolabels and uorescence resonance energy transfer donors," Adv. Mater., vol. 22, pp. 843{7, Mar. 2010.
    • M. Bevilacqua, A. Chaudhary, and R. B. Jackman, \The in uence of ammonia on the electrical properties of detonation nanodiamond," J. Appl. Phys., vol. 106, p. 123704, Dec.
    • [60] E. K. Chow, X.-Q. Zhang, M. Chen, R. Lam, E. Robinson, H. Huang, D. Scha er, E. Osawa, A. Goga, and D. Ho, \Nanodiamond therapeutic delivery agents mediate enhanced chemoresistant tumor treatment," Sci. Transl. Med., vol. 3, pp. 1{10, Mar. 2011.
    • [61] G. Xi, E. Robinson, B. Mania-Farnell, E. F. Vanin, K.-W. Shim, T. Takao, E. V. Allender, C. S. Mayanil, M. B. Soares, D. Ho, and T. Tomita, \Convection-enhanced delivery of nanodiamond drug delivery platforms for intracranial tumor treatment," Nanomedicine nanotechnology, Biol. Med., vol. 10, pp. 381{91, Feb. 2014.
    • [62] A. K. Mallik, S. Bysakh, K. S. Pal, N. Dandapat, B. K. Guha, S. Datta, and D. Basu, \Synthesis and characterisation of freestanding diamond coatings," Indian J. Eng. Mater. Sci., vol. 20, pp. 522{532, Dec. 2013.
    • [63] J. Xiao, X. Duan, Q. Yin, Z. Zhang, H. Yu, and Y. Li, \Nanodiamonds-mediated doxorubicin nuclear delivery to inhibit lung metastasis of breast cancer," Biomaterials, vol. 34, pp. 9648{9656, Sep. 2013.
    • [64] V. N. Mochalin, O. Shenderova, D. Ho, and Y. Gogotsi, \The properties and applications of nanodiamonds," Nat. Nanotechnol., vol. 7, pp. 11{23, Dec. 2011.
    • [65] V. Pichot, M. Comet, E. Fousson, C. Baras, A. Senger, F. Le Normand, and D. Spitzer, \An e cient puri cation method for detonation nanodiamonds," Diam. Relat. Mater., vol. 17, pp. 13{22, Jan. 2008.
    • [66] L. Lai and A. S. Barnard, \Modeling the thermostability of surface functionalisation by oxygen, hydroxyl, and water on nanodiamonds," Nanoscale, vol. 3, pp. 2566{2575, Jun. 2011.
    • [67] B. M. Chang, H. H. Lin, L. J. Su, W. D. Lin, R. J. Lin, Y. K. Tzeng, R. T. Lee, Y. C. Lee, A. L. Yu, and H. C. Chang, \Highly uorescent nanodiamonds protein-functionalized for cell labeling and targeting," Adv. Funct. Mater., vol. 23, pp. 5737{5745, Jul. 2013.
    • [68] M. A. Zurbuchen, M. P. Lake, S. A. Kohan, B. Leung, and L.-S. Bouchard, \Nanodiamond landmarks for subcellular multimodal optical and electron imaging," Sci. Rep., vol. 3, p. 2668, Sep. 2013.
    • [69] R. Kaur and I. Badea, \Nanodiamonds as novel nanomaterials for biomedical applications: Drug delivery and imaging systems," Int. J. Nanomedicine, vol. 8, pp. 203{220, Jan. 2013.
    • [70] F. Delgado-Vargas and O. Paredes-Lopez, Natural Colorants for Food and Nutraceutical Uses. Food Science and Technology, CRC Press, 2002.
    • [71] T. Luttrell, S. Halpegamage, J. Tao, A. Kramer, E. Sutter, and M. Batzill, \Why is anatase a better photocatalyst than rutile? - model studies on epitaxial TiO2 lms," Sci. Rep., vol. 4, p. 4043, Feb. 2014.
    • K. Nakata and A. Fujishima, \TiO2 photocatalysis: Design and applications," J. Photochem. Photobiol. C Photochem. Rev., vol. 13, pp. 169{189, Jun. 2012.
    • K. Hashimoto, H. Irie, and A. Fujishima, \TiO2 photocatalysis: A historical overview and future prospects," Jpn. J. Appl. Phys., vol. 44, pp. 8269{8285, Jul. 2006.
    • Z. W. Wicks, F. N. Jones, S. P. Pappas, and D. A. Wicks, Organic Coatings: Science and Technology. Wiley, Feb. 2007.
    • T. Wang, H. Jiang, L. Wan, Q. Zhao, T. Jiang, B. Wang, and S. Wang, \Potential application of functional porous TiO2 nanoparticles in light-controlled drug release and targeted drug delivery," Acta Biomater., vol. 13, pp. 354{363, Nov. 2015.
    • H.-J. Xiang, L. An, W.-W. Tang, S.-P. Yang, and J.-G. Liu, \Photo-controlled targeted intracellular delivery of both nitric oxide and singlet oxygen using a uorescence-trackable ruthenium nitrosyl functional nanoplatform," Chem. Commun., vol. 51, pp. 2555{2558, Dec. 2015.
    • X. Sun, C. Wang, M. Gao, A. Hu, and Z. Liu, \Remotely controlled red blood cell carriers for cancer targeting and near-infrared light-triggered drug release in combined photothermalchemotherapy," Adv. Funct. Mater., pp. 2386{2394, Feb. 2015.
    • E. K. Akdogan, M. R. Leonard, and A. Safari, \Size e ects in ferroelectric ceramics," in Handb. Low High Dielectr. Constant Mater. Their Appl. (H. Nalwa, ed.), ch. 2, pp. 61{112, Burlington: Academic Press, 1999.
    • A. H. Sihvola, Electromagnetic Mixing Formulas and Applications. IET, illustrate ed., 1999.
    • L. F. Chen, C. K. Ong, C. P. Neo, V. V. Varadan, and V. K. Varadan, Microwave Electronics. Chichester, UK: John Wiley & Sons, Ltd, Mar. 2004.
    • P. Lunkenheimer and A. Loidl, \Response of disordered matter to electromagnetic elds," Phys. Rev. Lett., vol. 91, p. 207601, Nov. 2003.
    • M. Hotta, M. Hayashi, M. T. Lanagan, D. K. Agrawal, and K. Nagata, \Complex permittivity of graphite, carbon black and coal powders in the ranges of X-band frequencies (8.2 to 12.4 GHz) and between 1 and 10 GHz," ISIJ Int., vol. 51, pp. 1766{1772, Nov. 2011.
    • Y. Poo, R.-x. Wu, X. Fan, J. Q. Xiao, and B.-b. Jin, \An experiment study of gold nanolm's conductivity at microwave and terahertz frequencies," in 2010 Asia-Paci c Microw.
    • Conf., vol. 2, pp. 1452{1454, Dec. 2010.
    • J. Wilson and J. F. B. Hawkes, Optoelectronics. Prentice Hall Europe, 3rd ed., 1998.
    • T. Zhang, M. Wu, S. Zhang, J. Wang, D. Zhang, F. He, and Z. P. Li, \In uence of the various doping elements on the microwave dielectric loss of silica," J. Alloys Compd., vol. 509, pp. 9279{9283, Jun. 2011.
    • [86] V. Mane and V. Puri, \Microwave conductivity and permittivity of moisture laden soybean seed," in 2008 Int. Conf. Recent Adv. Microw. Theory Appl. Microw. 2008, vol. 1, (Jaipur), pp. 168{170, Nov. 2008.
    • [87] B. Marinho, M. Ghislandi, E. Tkalya, C. E. Koning, and G. de With, \Electrical conductivity of compacts of graphene, multi-wall carbon nanotubes, carbon black, and graphite powder," Powder Technol., vol. 221, pp. 351{358, Jan. 2012.
    • [88] J.-Y. Kim, J. Lee, W. H. Lee, I. N. Kholmanov, J. W. Suk, T. Kim, Y. Hao, H. Chou, D. Akinwande, and R. S. Ruo , \Flexible and transparent dielectric lm with a high dielectric constant using chemical vapor deposition- grown graphene interlayer," ACS Nano, vol. 8, pp. 269{274, Dec. 2014.
    • [89] M. Gupta and E. Wai Leong Wong, \Microwave-material interactions," in Microwaves Met., pp. 43{63, John Wiley & Sons (Asia) Pte Ltd, 2007.
    • [90] P. Lunkenheimer, V. Bobnar, A. V. Pronin, A. I. Ritus, A. A. Volkov, and A. Loidl, \Materials with colossal dielectric constant: Do they exist?," Condens. Matter, pp. 1{4, Aug. 2002.
    • [91] M. Eichelbaum, R. Sto er, A. Karpov, C.-K. Dobner, F. Rosowski, A. Trunschke, and R. Schlogl, \The microwave cavity perturbation technique for contact-free and in situ electrical conductivity measurements in catalysis and materials science," Phys. Chem. Chem.
    • Phys., vol. 14, p. 1302, Nov. 2012.
    • [92] A. K. Jonscher, \The `universal' dielectric response," Nature, vol. 267, pp. 673{679, Jun. 1977.
    • [93] A. N. Papathanassiou, I. Sakellis, and J. Grammatikakis, \Universal frequency-dependent AC conductivity of conducting polymer networks," Appl. Phys. Lett., vol. 91, pp. 2{5, Sep. 2007.
    • [94] J. Ye, Y. Liu, J. Zhang, X. Chen, and M. Yao, \Preparation and electromagnetic wave absorption properties of core-shell structured Fe3O4-polyaniline nanoparticles," J. Magn. Magn. Mater., vol. 335, pp. 32{35, Oct. 2013.
    • [95] M. Wu, Y. D. Zhang, S. Hui, T. D. Xiao, S. Ge, W. A. Hines, J. I. Budnick, and G. W.
    • Taylor, \Microwave magnetic properties of Co50/(SiO2)50 nanoparticles," Appl. Phys. Lett., vol. 80, p. 4404, Jun. 2002.
    • [96] N.-N. Song, H.-T. Yang, H.-L. Liu, X. Ren, H.-F. Ding, X.-Q. Zhang, and Z.-H. Cheng, \Exceeding natural resonance frequency limit of monodisperse Fe3O4 nanoparticles via superparamagnetic relaxation," Sci. Rep., vol. 3, p. 3161, Nov. 2013.
    • M. Ma, Y. Wu, J. Zhou, Y. Sun, Y. Zhang, and N. Gu, \Size dependence of speci c power absorption of Fe3O4 particles in AC magnetic eld," J. Magn. Magn. Mater., vol. 268, pp. 33{39, May. 2004.
    • A. G. Gurevich, Ferrites at microwave frequencies. Consultants Bureau, 1963.
    • W. Jasinski and J. A. Berry, \Measurement of refractive indices of air, nitrogen, oxygen, carbon dioxide and water vapour at 3360 Mc/s," in Proc. IEE - Part III Radio Commun.
    • Eng., vol. 101, pp. 337{343, Mar. 1954.
    • [100] I. G. MacBean, \The measurement of complex permittivity and complex tensor permeability of ferrite materials at microwave frequencies," in Proc. IEE - Part B Radio Electron. Eng., vol. 104, pp. 296{306, Oct. 1957.
    • [101] J. F. Rouleau, J. Goyette, T. K. Bose, and M. F. Frechette, \Sensitivity of a microwave differential technique for the measurement of contaminants in gases," in Electr. Insul. Dielectr. Phenomena, 1999 Annu. Rep. Conf., (Austin), pp. 411{414 vol.1, Oct. 1999.
    • T. Ikeda and M. Danno, \Diagnostics of TM010-mode microwave cavity discharges in CO2- n2-he laser gas mixtures. I. Measurement of dielectric constant," Quantum Electron. IEEE J., vol. 31, pp. 1525{1532, Aug. 1995.
    • H. Yoshikawa and A. Nakayama, \Measurements of complex permittivity at millimeterwave frequencies with an end-loaded cavity resonator," IEEE Trans. Microw. Theory Tech., vol. 56, pp. 2001{2007, Aug. 2008.
    • H. S. M. Nazarat, Y. Kobayashi, and Z. Ma, \Frequency dependence measurements of complex permittivity of a dielectric plate by using TE0m1 modes in a circular cavity," in APMC 2009 - Asia Paci c Microw. Conf. 2009, (Singapore), pp. 421{424, Dec. 2009.
    • G. Zhang, S. Nakaoka, and Y. Kobayashi, \Millimeter wave measurements of temperature dependence of complex permittivity of dielectric plates by the cavity resonance method," in Proc. 1997 Asia-Paci c Microw. Conf., vol. 3, pp. 913{916, Dec. 1997.
    • T. Shimizu, S. Kojima, and Y. Kogami, \Accurate evaluation technique of complex permittivity for low-permittivity dielectric lms using a cavity resonator method in 60-GHz band," IEEE Trans. Microw. Theory Tech., vol. 63, pp. 279{286, Jan. 2015.
    • B. L. Givot, J. Krupka, and K. Derzakowski, \Split-post dielectric resonator for complex permittivity measurements at 20-25 GHz," in Microwaves, Radar Wirel. Commun. 2002.
    • MIKON-2002. 14th Int. Conf., vol. 2, pp. 401{403 vol.2, 2002.
    • H.-X. Zheng, \Measurements of complex permittivity using dielectric resonator at 60 GHz," in Antennas, Propag. EM Theory, 2006. ISAPE '06. 7th Int. Symp., (Guilin), pp. 1{4, Oct.
    • [109] J. Mazierska, J. Krupka, M. V. Jacob, and D. Ledenyov, \Complex permittivity measurements at variable temperatures of low loss dielectric substrates employing split post and single post dielectric resonators," in IEEE MTT-S Int. Microw. Symp. Dig., vol. 3, pp. 1825{1828 Vol.3, 2004.
    • IEE - Part III Radio Commun. Eng., vol. 97, pp. 367{376, Apr. 1950.
    • S. K. Chatterjee, \Microwave cavity resonators. some perturbation e ects and their applications," Radio Eng. J. Br. Inst., vol. 13, pp. 475{484, Jul. 1953.
    • R. A. Waldron, \Perturbation theory of resonant cavities," Proc, Inst. Elec. Eng., vol. 107C, pp. 272{274, Apr. 1960.
    • R. F. Harrington, Time-Harmonic Electromagnetic Fields. McGraw-Hill, 1961.
    • D. M. Pozar, Microwave Engineering. Wiley, 2004.
    • D. J. Rowe, A. A. Abduljabar, A. Porch, D. A. Barrow, and C. J. Allender, \Improved split-ring resonator for micro uidic sensing," IEEE Trans. Microw. Theory Tech., vol. 62, pp. 1{11, Mar. 2014.
    • D. Okhiria, TM010 Cylindrical Microwave Cavity Resonator for Material Measurements.
    • MSc Dissertation, Cardi University, 2010.
    • K. Spiers, J. Cashion, and K. Gross, \Characterization of magnetite and maghemite for hyperthermia in cancer therapy," Key Eng. Mater. Bioceram., vol. 254-256, pp. 213{216, Dec. 2003.
    • [146] Z. Li, L. Wei, M. Gao, and H. Lei, \One-pot reaction to synthesize biocompatible magnetite nanoparticles," Adv. Mater., vol. 17, pp. 1001{1005, Apr. 2005.
    • [147] A. R. Dinesen, C. T. Pedersen, and C. Bender Koch, \The thermal conversion of lepidocrocite ( -feooh) revisited," J. Therm. Anal. Calorim., vol. 64, pp. 1303{1310, Jun. 2001.
    • [148] T. S. Gendler, V. P. Shcherbakov, M. J. Dekkers, A. K. Gapeev, S. K. Gribov, and E. McClelland, \The lepidocrocite-maghemite-haematite reaction chain - I. Acquisition of chemical remanent magnetization by maghemite, its magnetic properties and thermal stability," Geophys. J. Int., vol. 160, pp. 815{832, Dec. 2005.
    • [149] R. Agr and R. September, \Evidence for a simple pathway to maghemite in earth and mars soils," Geochim. Cosmochim. Acta, vol. 66, pp. 2801{2806, Feb. 2002.
    • [150] K. Haneda and A. H. Morrish, \Magnetite to maghemite transformation in ultra ne particles," J. Phys. Colloq., vol. 38, pp. 321 { 323, Apr. 1977.
    • [151] T. W. Swaddle and P. Oltmann, \Kinetics of the magnetite-maghemite-hematite transformation, with special reference to hydrothermal systems," Can. J. Chem., vol. 58, pp. 1763{ 1772, Sep. 1980.
    • [152] M. Fang, V. Strom, R. T. Olsson, L. Belova, and K. V. Rao, \Particle size and magnetic properties dependence on growth temperature for rapid mixed co-precipitated magnetite nanoparticles," Nanotechnology, vol. 23, p. 145601, Apr. 2012.
    • [153] A. Espinosa, A. Serrano, A. Llavona, J. Jimenez de la Morena, M. Abuin, A. Figuerola, T. Pellegrino, J. F. Fernandez, M. Garcia-Hernandez, G. R. Castro, and M. A. Garcia, \On the discrimination between magnetite and maghemite by xanes measurements in uorescence mode," Meas. Sci. Technol., vol. 23, p. 015602, Jan. 2012.
    • [154] I. Chamritski and G. Burns, \Infrared- and raman-active phonons of magnetite, maghemite, and hematite: a computer simulation and spectroscopic study," J. Phys. Chem. B, vol. 109, pp. 4965{8, Mar. 2005.
    • [155] A. M. Jubb and H. C. Allen, \Vibrational spectroscopic characterization of hematite, maghemite, and magnetite thin lms produced by vapor deposition," ACS Appl. Mater. Interfaces, vol. 2, pp. 2804{2812, Oct. 2010.
    • [156] W. Kim, C. Y. Suh, S. W. Cho, K. M. Roh, H. Kwon, K. Song, and I. J. Shon, \A new method for the identi cation and quanti cation of magnetite-maghemite mixture using conventional x-ray di raction technique," Talanta, vol. 94, pp. 348{52, May. 2012.
    • [157] D. L. A. de Faria, S. Ven^ancio Silva, and M. T. de Oliveira, \Raman microspectroscopy of some iron oxides and oxyhydroxides," J. Raman Spectrosc., vol. 28, pp. 873{878, Jul. 1997.
    • [158] O. N. Shebanova and P. Lazor, \Raman study of magnetite (Fe3O4): Laser-induced thermal e ects and oxidation," J. Raman Spectrosc., vol. 34, pp. 845{852, Jun. 2003.
    • [159] B. Z. Tang, Y. Geng, J. W. Y. Lam, B. Li, X. Jing, X. Wang, F. Wang, A. B. Pakhomov, and X. X. Zhang, \Processible nanostructured materials with electrical conductivity and magnetic susceptibility: Preparation and properties of maghemite polyaniline nanocomposite lms," Chem. Mater., vol. 11, pp. 1581{1589, Mar. 1999.
    • [160] T. Fukuchi, \ESR techniques for the detection of seismic frictional heat," in Earthq. Res. Anal. - Seismol. Seism. Earthq. Geol., ch. 16, pp. 317{340, InTech, 2012.
    • [162] B. P. Weiss, S. Sam Kim, J. L. Kirschvink, R. E. Kopp, M. Sankaran, A. Kobayashi, and A. Komeili, \Ferromagnetic resonance and low-temperature magnetic tests for biogenic magnetite," Earth Planet. Sci. Lett., vol. 224, pp. 73{89, Apr. 2004.
    • [170] H. E. Ghandoor, H. M. Zidan, M. M. H. Khalil, and M. I. M. Ismail, \Synthesis and some physical properties of magnetite ( Fe3O4 ) nanoparticles," Int. J. Electrochem. Sci., vol. 7, pp. 5734{5745, Jun. 2012.
    • [171] J. Sun, S. Zhou, P. Hou, Y. Yang, J. Weng, X. Li, and M. Li, \Synthesis and characterization of biocompatible Fe3O4 nanoparticles," J. Biomed. Mater. Res. Part A, pp. 333{341, Sep. 2006.
    • [172] G. C. Allen, M. T. Curtis, A. J. Hooper, and P. M. Tucker, \X-ray photoelectron spectroscopy of iron-oxygen systems," J. Chem. Soc. Dalt. Trans., pp. 1525{1530, Jan. 1974.
    • [173] A. A. Elsherbini, M. Saber, M. Aggag, A. El-Shahawy, and H. A. Shokier, \Magnetic nanoparticle-induced hyperthermia treatment under magnetic resonance imaging," Magn. Reson. Imaging, vol. 29, pp. 272{280, Aug. 2011.
    • M. Z. Ansar, S. Atiq, K. Alamgir, and S. Nadeem, \Frequency and temperature dependent dielectric response of Fe3O4," J. Sci. Res., vol. 6, pp. 399{506, Aug. 2014.
    • Z. Svindrych, A. Youssef, and Z. Janu, \Link between magnetic and dielectric properties in magnetite," in Acta Phys. Pol. A, vol. 118, (Kosice), pp. 940{941, Jul. 2010.
    • C. Zhang, C. J. Li, G. Zhang, X. J. Ning, C. X. Li, H. Liao, and C. Coddet, \Ionic conductivity and its temperature dependence of atmospheric plasma-sprayed yttria stabilized zirconia electrolyte," Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., vol. 137, pp. 24{30, Oct.
    • O. Shenderova and D. Gruen, \Ultrananocrystalline diamond," in Ultrananocrystalline Diam. (O. Shenderova and D. Gruen, eds.), ch. 9, pp. 291{326, New York: William Andrew Publishing, 2006.
    • [194] S. Osswald, G. Yushin, V. Mochalin, S. O. Kucheyev, and Y. Gogotsi, \Control of sp2/sp3 carbon ratio and surface chemistry of nanodiamond powders by selective oxidation in air," J. Am. Chem. Soc., vol. 128, pp. 11635{11642, May. 2006.
    • [195] A. M. Panich, A. I. Shames, N. A. Sergeev, M. Olszewski, J. K. McDonough, V. N. Mochalin, and Y. Gogotsi, \Nanodiamond graphitization: a magnetic resonance study," J. Phys. Condens. Matter, vol. 25, p. 245303, Jun. 2013.
    • [196] F. Y. Xie, W. G. Xie, L. Gong, W. H. Zhang, S. H. Chen, Q. Z. Zhang, and J. Chen, \Surface characterization on graphitization of nanodiamond powder annealed in nitrogen ambient," Surf. Interface Anal., vol. 42, pp. 1514{1518, May. 2010.
    • [197] O. Shenderova, A. M. Panich, S. Moseenkov, S. C. Hens, V. Kuznetsov, and H.-M. Vieth, \Hydroxylated detonation nanodiamond: FTIR, XANES, and nmr studies," J. Phys. Chem. C, vol. 115, pp. 19005{19011, Oct. 2011.
    • [198] T. Y. Leung, W. F. Man, P. K. Lim, W. C. Chan, F. Gaspari, and S. Zukotynski, \Determination of the sp3/sp2 ratio of a-c:h by XANES and XANES," J. Non. Cryst. Solids, vol. 254, pp. 156{160, Sep. 1999.
    • [199] G. Speranza and N. Laidani, \Measurement of the relative abundance of sp2 and sp3 hybridised atoms in carbon-based materials by XANES: A critical approach. Part II," Diam. Relat. Mater., vol. 13, pp. 451{458, Nov. 2004.
    • [200] D. Slocombe, A. Porch, E. Bustarret, and O. Williams, \Microwave properties of nanodiamond particles," Appl. Phys. Lett., vol. 102, p. 244102, Jun. 2013.
    • [201] A. C. Ferrari and J. Robertson, \Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond," Philos. Trans. A. Math. Phys. Eng. Sci., vol. 362, pp. 2477{2512, Nov. 2004.
    • [202] U. Ott, \Nanodiamonds in meteorites: properties and astrophysical context," J. Achiev. Mater. Manuf. Eng., vol. 37, pp. 779{784, Dec. 2009.
    • [203] S. Osswald, V. N. Mochalin, M. Havel, G. Yushin, and Y. Gogotsi, \Phonon con nement e ects in the raman spectrum of nanodiamond," Phys. Rev. B, vol. 80, p. 75419, Aug. 2009.
    • H. Yang, M. Cao, Y. Li, H. Shi, Z. Hou, X. Fang, H. Jin, W. Wang, and J. Yuan, \Enhanced dielectric properties and excellent microwave absorption of sic powders driven with nio nanorings," Adv. Opt. Mater., vol. 2, pp. 214{219, Dec. 2014.
    • H. Kwon, S.-G. Kim, B.-W. Lee, W.-C. Seo, and M. Leparoux, \Corrigendum to 'mechanical properties of nanodiamond and multi-walled carbon nanotubes dual-reinforced aluminum matrix composite materials' [msa 632 (2015) 72-77]," Mater. Sci. Eng. A, vol. 639, p. 335, Apr. 2015.
    • A. Porch, D. I. Odili, and P. A. Childs, \Microwave characterisation of carbon nanotube powders," Nanoscale Res. Lett., vol. 7, p. 429, Aug. 2012.
    • T. Zhao, C. Hou, H. Zhang, R. Zhu, S. She, J. Wang, T. Li, Z. Liu, and B. Wei, \Electromagnetic wave absorbing properties of amorphous carbon nanotubes," Sci. Rep., vol. 4, pp. 1{7, Jan. 2014.
    • Petrochemical Res., vol. 2, pp. 37{44, Aug. 2012.
    • C. H. Ao and S. C. Lee, \Indoor air puri cation by photocatalyst TiO2 immobilized on an activated carbon lter installed in an air cleaner," Chem. Eng. Sci., vol. 60, pp. 103{109, Jan. 2005.
    • W. Wang, G. Huang, J. C. Yu, and P. K. Wong, \Advances in photocatalytic disinfection of bacteria: Development of photocatalysts and mechanisms," J. Environ. Sci., vol. 34, pp. 232{247, Jun. 2015.
    • M. Altomare, M. V. Dozzi, G. L. Chiarello, A. Di Paola, L. Palmisano, and E. Selli, \High activity of brookite TiO2 nanoparticles in the photocatalytic abatement of ammonia in water," Catal. Today, vol. 252, pp. 184{189, Nov. 2014.
    • [221] J. Zhang, P. Zhou, J. Liu, and J. Yu, \New understanding of the di erence of photocatalytic activity among anatase, rutile and brookite TiO2," Phys. Chem. Chem. Phys., vol. 16, pp. 20382{20386, Aug. 2014.
    • W. H. Hartwig and J. J. Hinds, \Use of superconducting cavities to resolve carrier trapping e ects in cds," J. Appl. Phys., vol. 40, pp. 2020{2027, Apr. 1969.
    • H. K. Dunn, L. M. Peter, S. J. Bingham, E. Maluta, and A. B. Walker, \In situ detection of free and trapped electrons in dye-sensitized solar cells by photo-induced microwave re ectance measurements," J. Phys. Chem. C, vol. 116, pp. 22063{22072, Sep. 2012.
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
    68
    68%
  • No similar publications.

Share - Bookmark

Cite this article