LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Ferriday, Timothy (2014)
Languages: English
Types: Doctoral thesis
Subjects: QE
This thesis focuses on the development of the black shales belonging to the lower Silurian Formigoso Formation (Fm.) situated within the Cantabrian Fold Belt, Northern Spain. The geochemical data obtained by the use of an energy-dispersive Niton XL3t XRF analyser under controlled laboratory conditions is comparable to that of conventional wavelength dispersive XRF analysers. The in-situ field analysis resulted in similar geochemical signals and elemental concentrations to that of the laboratory analysed samples. The high-resolution geochemical database, consisting of 4148 readings of the Formigoso Fm. was used to characterise the shales of the Formigoso Fm. relative to a number of international shale standards. Following this geochemical characterisation, a number of palaeoenvironmental proxies for [1] anoxia reconstructions, [2] palaeosalinity, [3] palaeohumidity, [4] weathering indices, and finally [5] bioproductivity were utilised. The combined outcome of these proxies together with field-based sedimentological observations led to a detailed reconstruction of the environment that prevailed during the deposition of the Bernesga Mb. black shales. A generic model is developed for the formation of these organically enriched sediments. This model is subsequently compared to previously published Silurian, black ‘hot’ shale models. The major parameters controlling the development of the Cantabrian black shale deposits were mainly the presence of a pronounced palaeorelief, which was generated by a combination of tectonic pulses related to the widening of the Rheic Ocean to the north and glaciogenic processes of the Hirnantian ice masses to the south. Orbital parameters or ‘deep time cycles’, mainly Obliquity and Eccentricity in combination with tectonic pulses led to high resolution sea-level oscillations and consequent cyclic behaviour of the redox elements recorded within the ‘hot’ shale deposits of the southern Cantabrian Basin. Additionally, 209 measurements of 76 international and inter-laboratory standards were performed to formulate new equations for the precise calibration of major and trace elements
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 7.13.1 Correlation across the southern Cantabrian region using the GR signature's and the Rb/Zr grain-size proxy .............................................................................................................306 7.13.2 Systematic development of the Cantabrian 'hot' shales .............................................308 7.13.3 Comparison of the Cantabrian black shale model to previously published studies ....312 Deer, W.A., Howie, R.A., and Zussman, J., 1966. An introduction to the rock-forming minerals. pp.528.
    • Delaney, M., 1998. Phosphorus accumulation in marine sediments and the oceanic phosphorus cycle.
    • Global Biogeochemical Cycles, Vol.12(4), pp.563-572.
    • Dellwig, O., Hinrichs, J., Hild, A. and Brumsack, H., 2000. Changing sedimentation in tidal flat sediments of the southern North Sea from the Holocene to the present: a geochemical approach.
    • Journal of Sea Research, Vol.44(3-4), pp.195-208.
    • Demaison, G., 1993. Contributions of geochemistry to exploration strategy. Applied Petroleum Geochemistry, Éditions Technip, Paris, pp.489-503.
    • Demaison, G.J. and Moore, G.T., 1980. Anoxic environments and oil source bed genesis. AAPG Bulletin, Vol.64(8), pp.1179-1209.
    • Descourvieres, C., Douglas, G., Leyland, L., Hartog, N. and Prommer, H., 2011. Geochemical reconstruction of the provenance, weathering and deposition of detrital-dominated sediments in the Perth Basin: The Cretaceous Leederville Formation, south-west Australia. Sedimentary Geology, Vol.236(1-2), pp.62-76.
    • Dias, R. and Ribeiro, A., 1995. The Ibero-Armorican Arc: A collision effect against an irregular continent? Tectonophysics, Vol.246(1-3), pp.113-128.
    • Díaz Rodríguez, L., 1989. Procesos de dolomitización-dedolomitización de la formación Láncara (Cámbrico inferior-medio) en la región de pliegues y mantos de la zona Cantábrica, NW de España.
    • Estudios Geológicos, Vol.45(1-2), pp.61-70.
    • Didyk, B.M., Simoneit, B.R.T., Brassell, S.C. and and Eglinton, G., 1978. Organic geochemical indicators of paleoenvironmental conditions of sedimentation. Nature, Vol.272, pp.216-222.
    • Diester-Haass, L., Robert, C. and Chamley, H., 1998. Paleoproductivity and climate variations during sapropel deposition in the eastern Mediterranean Sea, Proceedings of the Ocean Drilling Program.
    • Scientific Results, 1998, Ocean Drilling Program, pp.227-248.
    • Díez Fernández, R. and Martínez Catalán, J.R., 2009. 3D Analysis of an Ordovician igneous ensemble: A complex magmatic structure hidden in a polydeformed allochthonous Variscan unit.
    • Journal of Structural Geology, Vol.31(3), pp.222-236.
    • Dill, H., 1986. Metallogenesis of early Paleozoic graptolite shales from the Graefenthal Horst (northern Bavaria-Federal Republic of Germany). Economic Geology, Vol.81(4), pp.889-903.
    • Djarnia, M.R. and Fekirine, B., 1998. Sedimentological and diagenetic controls on Cambro-Ordovician reservoir quality in the southern Hassi Messaoud area (Saharan Platform, Algeria). Geological Society, London, Special Publications, Vol.132(1), pp.167-174.
    • Dodd, J.R. and Crisp, E.L., 1982. Non-linear variation with salinity of Sr/Ca and Mg/Ca ratios in water and aragonitic bivalve shells and implications for paleosalinity studies. Palaeogeography, Palaeoclimatology, Palaeoecology. Vol.38(1-2). pp.45-56.
    • Doveton, J.H. and Merriam, D.F., 2004. Borehole petrophysical chemostratigraphy of Pennsylvanian black shales in the Kansas subsurface. Chemical Geology, Vol.206(3-4), pp.249-258.
    • Droser, M.L. and Bottjer, D.J., 1986. A semiquantitative field classification of ichnofabric. Journal of Sedimentary Research, Vol.56(4), pp.558-559.
    • Drost, K., Linnemann, U., Wemmer, K., Budil, P., Kraft, P., Fatka, O. and Marek, J., 2003. Provenance and early diagenetic processes of the Ordovician Šárka Formation at Praha-Ĉervený vrch Hill (Barrandian, Czech Republic). Bulletin of Geosciences, Vol.78(2), pp.147-156.
    • Dypvik, H. and Harris, N.B., 2001. Geochemical facies analysis of fine-grained siliciclastics using Th/U, Zr/Rb and (Zr+Rb)/Sr ratios. Chemical Geology, Vol.181(1-4), pp.131-146.
    • Dypvik, H., 1984. Geochemical compositions and depositional conditions of Upper Jurassic and Lower Cretaceous Yorkshire clays, England. Geological Magazine, Vol.121(5), pp.489.
    • Eichmüller, K. and Seibert, P., 1984. Faziesentwicklung zwischen Tournai und Westfal D im Kantabrischen Gebirge (NW-Spanien). In: Meiburg, P., and Schumann, D., (eds), Das Iberia.
    • Symposium der Deutschen Geologischen Gesellschaft. Enke, pp.163-191.
    • Eickmann, B., Bach, W., Kiel, S., Reitner, J. and Peckmann, J., 2009. Evidence for cryptoendolithic life in Devonian pillow basalts of Variscan orogens, Germany. Palaeogeography, Palaeoclimatology, Palaeoecology, Vol.283(3-4), pp.120-125.
    • Einsele, G., 2000. Sedimentary basins: evolution, facies, and sediment budget. pp.792. SpringerVerlag. (Berlin, Heidelberg, New York).
    • Elbaz-Poulicheet, F., Nagy, A. and Cserny, T., 1997. The distribution of redox sensitive elements (U, As, Sb, V and Mo) along a river-wetland-lake system (Balaton Region, Hungary). Aquatic Geochemistry, Vol.3(3), pp.267-282.
    • Elbaz-Poulichet, F., Seidel, J.L., Jézéquel, D., Metzger, E., Prévot, F., Simonucci, C., Sarazin, G., Viollier, E., Etcheber, H., Jouanneau, J., Weber, O. and Radakovitch, O., 2005. Sedimentary record of redox-sensitive elements (U, Mn, Mo) in a transitory anoxic basin (the Thau lagoon, France). Marine Chemistry, Vol.95(3-4), pp.271-281.
    • Ellwood, B.B., Brett, C.E., Tomkin, J.H. and Macdonald, W.D., 2012. Visual identification and quantification of Milankovitch climate cycles in outcrop: an example from the Upper Ordovician Kope Formation, Northern Kentucky. Geological Society, London, Special Publications, Vol.373. pp.341- 353.
    • Erbacher, J., Foreerich, O., Wilson, P.A., Birch, H., Mutterlose, J., 2005. Stable organic carbon isotope stratigraphy across Oceanic Anoxic Event 2 of Demerara Rise, western tropical Atlantic.
    • Geochemistry, Geophysics, Geosystems, Vol.6(6). Pp:Q06010,DOI:10.1029/2004GC00850.
    • Erbacher, J., Mosher, D.C., Malone, M.J., Berti, D., Bice, K.L., Bostock, H., Brumsack, H., Danelian, T., Forster, A., Glatz, C., Heidersdorf, F., Henderiks, J., Janecek, T.R., Junium, C., Le Callonnec, L., MacLeod, K., Meyers, P.A., Mutterlose, H.J., Nishi, H., Norris, R.D., Ogg, J.G., O'Regan, A.M., Rea, B., Sexton, P., Sturt, H., Suganuma, Y., Thurow, J.W., Wilson, P.A., Wise, S.W., 2004. Demerara Rise: Equatorial Cretateous and Paleogene Paleoceanographic Transect, Western Atlantic.
    • Proceedings of the Ocean Drilling Program. Initial Reports, Vol.207, doi:10.2973/odp.proc.ir.207.2004 College Station. Texas.
    • Evers, H.J., 1967. Geology of the Leonides between the Bernesga and Porma rivers, Cantabrian mountains (NW Spain). Leidse Geologische Mededelingen, Vol.41, pp.83-151.
    • Fagel, N., 2007. Clay Minerals, Deep Circulation and Climate. In: Hillaire-Marcel, C., and De Vernal, A., (eds), Proxies in Late Cenozoic Paleoceanography. Developments in Marine Geology, p.139-184, Elsevier (Amsterdam).
    • Fedo, C.M., Nesbitt, H.W. and Young, G.M., 1995. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance.
    • Geology, Vol.23(10), pp.921-924.
    • Fedo, C.M., Young, G.M., Nesbitt, H.W. and Hanchar, J.M., 1997. Potassic and sodic metasomatism in the Southern Province of the Canadian Shield: Evidence from the Paleoproterozoic Serpent Formation, Huronian Supergroup, Canada. Precambrian Research, Vol.84(1-2), pp.17-36.
    • Fello, N., Luning, S., Storch, P. and Redfern, J., 2006. Identification of early Llandovery (Silurian) anoxic palaeo-depressions at the western margin of the Murzuq Basin,(southwest-Libya) based on gamma-ray spectrometry in surface exposures. Geoarabia-Manama, Vol.11(3), p.101.
    • Fernández, L.P., 1993. La Formación San Emiliano (Carbonífero de la Zona Cantábrica, no. de España): Estratigrafía y extensión lateral. Algunas implicaciones paleogeográficas. Trabajos de Geología, Vol.19, pp.97-122.
    • Fernández-Suárez, J., Dunning, G.R., Jenner, G.A., and Gutiérrez-Alonso, G., 2000. Variscan collisional magmatism and deformation in NW Iberia: constraints from U-Pb geochronology of granitoids. Journal of the Geological Society, Vol.157(3), pp.565-576.
    • Ferriday, T. and Montenari, M., 2012. Chemostratigraphical Characterisation of the Lower Silurian Formigoso Formation: A Case Study from Aralla (Cantabrian Mountains, Province Leon, NW Spain), EGU General Assembly Conference Abstracts, 2012, pp.290.
    • Fertl, W. and Chilingar, G., 1988. Total organic carbon content determined from well logs. SPE Formation Evaluation, Vol.3(2), pp.407-419.
    • Fertl, W.H., 1979. Gamma ray spectral data assists in complex formation evaluation. The Log Analyst, Vol.20(5), pp.3-37.
    • Fisher, Q.J. and Wignall, P.B., 2001. Palaeoenvironmental controls on the uranium distribution in an Upper Carboniferous black shale (Gastrioceras listeri Marine Band) and associated strata; England.
    • Chemical Geology, Vol.175(3-4), pp.605-621.
    • Flanagan, F., 1976. Description and analyses of eight new USGS rock standards. US Geological Survey, Professional Papers, Vol.840, pp.131-183.
    • Flanagan, F.J. and Geological Survey (US), 1984. Three USGS mafic rock reference samples, W-2, DNC-1, and BIR-1. US Government Printing Office. pp.54.
    • Floyd, P., Winchester, J. and Park, R., 1989. Geochemistry and tectonic setting of Lewisian clastic metasediments from the early Proterozoic Loch Maree Group of Gairloch, NW Scotland. Precambrian Research, Vol.45(1), pp.203-214.
    • Floyd, P.A. and Winchester, J.A., 1978. Identification and discrimination of altered and metamorphosed volcanic rocks using immobile elements. Chemical Geology, Vol.21(3-4). pp.291-306.
    • Fombella, M., 1978. Acritarcos de la Formación Oville, edad Cámbrico Medio-Tremadoc, Provincia de León, España. Palinología, Vol.1, pp.245-261.
    • Fortey, R.A., and Cocks, L.R.M., 2003. Palaeontological evidence bearing on global OrdovicianSilurian continental reconstructions. Earth-Science Reviews, Vol.61. pp.245-307.
    • Francois, R., Honjo, S., Manganini, S.J. and Ravizza, G.E., 1995. Biogenic barium fluxes to the deep sea: Implications for paleoproductivity reconstruction. Global Biogeochemical Cycles, Vol.9(2), pp.289- 303.
    • Froelich, P., Klinkhammer, G., Bender, M.a.a., Luedtke, N., Heath, G.R., Cullen, D., Dauphin, P., Hammond, D., Hartman, B. and Maynard, V., 1979. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochimica et Cosmochimica Acta, Vol.43(7), pp.1075-1090.
    • Galindo, C., Mougin, L., Fakhi, S., Nourreddine, A., Lamghari, A. and Hannache, H., 2007. Distribution of naturally occurring radionuclides (U, Th) in Timahdit black shale (Morocco). Journal of Environmental Radioactivity, Vol.92(1), pp.41-54.
    • Garcia-Alcalde, J.L., Carls, P., Pardo Alonso, M.V., Lopez, J.S., Soto, F., Truyols-Massoni, M. and Valenzuela-Rios, J.I., 2002b. 6. Devonian. In: Gibbons, W., and Moreno, T., (eds), The Geology of Spain. London: Geological Society, pp.67-91.
    • Garciá-López, S. and Bastida, F., (eds) 2002. Palaeozoic conodonts from northern Spain. Insituto Geológico y Minero de Españia, Serie Cuadernos del Museo Geominero, Vol.1, pp.438, Madrid.
    • García-López, S., Brime, C., Valín, M.L., Sanz-López, J., Bastida, F., Aller, J. and Blanco-Ferrera, S., 2007. Tectonothermal evolution of a foreland fold and thrust belt: the Cantabrian Zone (Iberian Variscan belt, NW Spain). Terra Nova, Vol.19(6), pp.469-475.
    • García-Ramos, J., Valenzuela, M. and Suárez De Centi, C., 1989. Estructuras de deformación asociadas a tempestivas: ejemplos en series siliciclásticas y carbonatadas someras del Paleozoico y Jurásico de Asturias. Trabajos de Geología, Vol.18(18), pp.65-77.
    • Garnier, V., Giuliani, G., Ohnenstetter, D., Fallick, A.E., Dubessy, J., Banks, D., Vinh, H.Q., Lhomme, T., Maluski, H., Pêcher, A., Bakhsh, K.A., Long, P.V., Trinh, P.T. and Schwarz, D., 2008. Marblehosted ruby deposits from Central and Southeast Asia: Towards a new genetic model. Ore Geology Reviews, Vol.34(1-2), pp.169-191.
    • Gladney, E.S. and Roelandts, I., 1988. 1987 Compilation of Elemental Concentration Data for USGS BHVO‐1, MAG‐1, QLO‐1, RGM‐1, SCo‐1, SDC‐1, SGR‐1 and STM‐1. Geostandards Newsletter, Vol.12(2), pp.253-362.
    • González Lastra, J., 1978. Facies salinas en la Caliza de Montaña (Cordillera Cantábrica). Trabajos de Geología, Vol.10, pp.249-265.
    • González, R.M.R., 1983. Palinología de las formaciones del Silúrico Superior-Devónico Inferior de la Cordillera Cantábrica. Institución Fray Bernardino de Sahagún de la Excelentísima Diputación Provincial de León y del Servicio de Publicaciones de la Universidad de León, pp.231, (Universidad de León).
    • Gordon, R.M., Coale, K.H. and Johnson, K.S., 1997. Iron distributions in the equatorial Pacific: Implications for new production. Limnology and Oceanography, Vol.42(3), pp.419-431.
    • Govindaraju, K., 1980. Report (1980) on Three GIT‐IWG Rock Reference Samples: Anorthosite from Greenland, AN‐G; Basalte d'Essey‐la‐Côte, BE‐N; Granite de Beauvoir, MA‐N. Geostandards Newsletter, Vol.4(1), pp.49-138.
    • Govindaraju, K., 1984. Report (1984) on Two GIT‐IWG Geochemical Reference Samples: Albite from Italy, AL‐I and Iron Formation Sample from Greenland, IF‐G. Geostandards Newsletter, Vol.8(1), pp.63-113.
    • Govindaraju, K., 1989. 1989 compilation of working values and sample description for 272 geostandards. Geostandards Newsletter, Vol.13(s1), pp.1-113.
    • Govindaraju, K., 1994. 1994 compilation of working values and sample description for 383 geostandards. Geostandards Newsletter, Vol.18(S1), pp.1-158.
    • Gradstein, F.M., Ogg, J.G., Schmitz, M.D. and Ogg, G.M., (eds). 2012. The Geological Time Scale 2012. Vol. 1 & 2, pp.1144. Elsevier (Amsterdam).
    • Gromet, L.P., Haskin, L.A., Korotev, R.L. and Dymek, R.F., 1984. The ―North American shale composite‖: Its compilation, major and trace element characteristics. Geochimica et Cosmochimica Acta, Vol.48(12), pp.2469-2482.
    • Gutiérrez-Alonso, G., Fernández-Suárez, J., Gutiérrez-Marco, J.C., Corfu, F., Murphy, J.B., Suárez, M. 2007. U-Pb depositional age for the upper Barrios Formation (Armorican Quartzite facies) in the Cantabrian Zone of Iberia: Implications for stratigraphic correlation and paleogeography. Linnemann Gutiérrez-Alonso, G., Fernández-Suárez, J., Jeffries, T.E., Jenner, G.A., Tubrett, M.N., Cox, R. and Jackson, S.E., 2003. Terrane accretion and dispersal in the northern Gondwana margin. An Early Paleozoic analogue of a long-lived active margin. Tectonophysics, Vol.365(1-4), pp.221-232.
    • Gutiérrez-Alonso, G., Johnston, S., Weil, A., Pastor-Galán, D., Fernández-Suárez, J., Autin, W.J. and Holbrook, J.M., 2012. Buckling an orogen: The Cantabrian Orocline. GSA Today, Vol.22(7), pp.4-9.
    • Gutiérrez-Alonso, G., Murphy, J.B., Fernández-Suárez, J. and Hamilton, M.A., 2008. Rifting along the northern Gondwana margin and the evolution of the Rheic Ocean: A Devonian age for the El Castillo volcanic rocks (Salamanca, Central Iberian Zone). Tectonophysics, Vol.461(1-4), 157-165.
    • Gutiérrez-Marco, J., Aramburu, C., Arbizu, M., Méndez-Bedia, I., Rábano, I. and Villas, E., 1996b.
    • Rasgos estratigráficos de la sucesión del Ordovícico Superior en Portilla de Luna (Zona Cantábrica, noroeste de España). Geogaceta, Vol.20(1), pp.11-14.
    • Gutierrez-Marco, J., Robardet, M., Rabano, I., Sarmiento, G.N., Lancha, M.A.S.J., Araujo, P.H. and Pidal, A.P.P., 2002. Ordovician. In: Gibbons, W., and Moreno, T., (eds), The Geology of Spain.
    • London: Geological Society, pp.31-49.
    • Gutiérrez-Marco, J.C, and Rábano, I.,(eds), 1998. Proceedings of the Sixth International Graptolite Conference of the GWG (IPA) and the SW Iberia Field Meeting 1998 of the International Subcommission on Silurian Stratigraphy (ICS-IUGS). Insituto Technological Geominero de Epspania, Temas Geológico-Mineros, Vol.23, pp337. (Madrid).
    • Gutierrez-Marco, J.C. and Štorch, P., 1998. Graptolite biostratigraphy of the lower Silurian (Llandovery) shelf deposits of the Western Iberian Cordillera, Spain. Geological Magazine, Vol.135(1), pp.71-92.
    • Gutiérrez-Marco, J.C., Aramburu, C., Arbizu, M., Mendez-Bedia, I., Rabano, I. and Villas, E., 1996a.
    • Rasgos estratigraficos de la sucesion del Ordovicico Superior en Portilla de Luna (Zona Cantabrica, noroeste de Espana). Geogaceta, Vol.20(1), pp.11-14.
    • Gutiérrez-Marco, J.C., Ghienne, J., Bernárdez, E. and Hacar, M.P., 2010. Did the Late Ordovician African ice sheet reach Europe? Geology, Vol.38(3), pp.279-282.
    • Hallberg, R.O., 1976. A Geochemical Method for Investigation of Paleoredox Conditions in Sediments.
    • Ambio Special Report, Vol.4, pp.139-147.
    • Hammann, W., 1992. The Ordovician trilobites from the Iberian chains in the province of Aragon, NESpain. 1. The trilobites of the Cystoid Limestone (Ashgill series). Beringeria, Vol.6, pp1-219.
    • Hammer, Ø. and Harper, D.A.T., 2006. Paleontological Data Analysis. pp.351. Wiley-Blackwell.
    • Hammer, Ø., Harper, D.A.T. and Ryan, P.D., 2001. PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica, Vol.4(1), pp. 1-9.
    • Handoh, I.C., Bigg, G.R., and Jones, E.J.W., 2003. Evolution of upwelling in the Atlantic Ocean basin.
    • Palaeogeography, Palaeoclimatology, Palaeoecology, Vol.202(1-2), pp.31-58.
    • Hans Wedepohl, K., 1995. The composition of the continental crust. Geochimica et Cosmochimica Acta, Vol.59(7), pp.1217-1232.
    • Harland, W.B., 1972. The Ordovician Ice Age. Geological Magazine, Vol.109(5), pp.451-456.
    • Harnois, L., 1988. The CIW index: A new chemical index of weathering. Sedimentary Geology, Vol.55(3-4), pp.319-322.
    • Harris, P.J., and Knorr, P.O., 2009. What does the ‗lilliput effect' mean?. Palaeogeography, Palaeoclimatology, Palaeoecology, Vol.284(1-2), pp.4-10.
    • Hatch, J. and Leventhal, J., 1992. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, USA. Chemical Geology, Vol.99(1), pp.65-82.
    • Heckel, P.H., 1986. Sea-level curve for Pennsylvanian eustatic marine transgressive-regressive depositional cycles along midcontinent outcrop belt, North America. Geology, Vol.14(4), pp.330-334.
    • Hedges, J.I. and Keil, R.G., 1995. Sedimentary organic matter preservation: an assessment and speculative synthesis. Marine Chemistry, Vol.49(2-3), pp.81-115.
    • Heinz, W., Loeschke, J., Vavra, J., 1985. Phreatomagmatic volcanism during the Ordovician of the Cantabrian Mountains (NW Spain). Geologische Rundschau, Vol.74(3), pp.623-639.
    • Herron, M.M., 1988. Geochemical classification of terrigenous sands and shales from core or log data.
    • Journal of Sedimentary Research, Vol.58(5), pp.820-829.
    • Imbrie, J. and Imbrie, J.Z., 1980. Modeling the climatic response to orbital variations. Science, Vol.207(4434), pp.943-953.
    • Jochum, K.P., Wang, X., Nohl, U., Schmidt, S., Schwager, B., Stoll, B., Yang, Q., and Weis, U., 2011.
    • Geostandards and Geoanalytical research-Bibliographic review 2010. Geostandards and Geoanalytical Research, Vol.35. pp.485-488.
    • Johnson, M.E., 2006. Relationship of Silurian sea-level fluctuations to oceanic episodes and events.
    • GFF, Vol.128(2), pp.115-121.
    • Johnson, M.E., 2010. Tracking Silurian eustasy: Alignment of empirical evidence or pursuit of deductive reasoning? Palaeogeography, Palaeoclimatology, Palaeoecology, Vol.296(3), pp.276-284.
    • Johnsson, M.J., and Basu, A., 1993. Processes Controlling the Composition of Clastic Sediments.
    • Geological Society of America Special Paper 284, pp.352., The Geological Society of America, Boulder (Colorado).
    • Jones, B. and Manning, D.A.C., 1994. Comparison of geochemical indices used for the interpretation of paleoredox conditions in ancient mudstones. Chemical Geology, Vol.111, pp.111-129.
    • Jorissen, F.J., Fontanier, C. and Thomas, E., 2007. Paleoceanographical Proxies Based on Deep-Sea Benthic Foraminiferal Assemblage Characteristics. In: Hillarie-Marcel, C., and De Vernal, A, (eds), Proxies in Late Cenozoic Paleoceanography, pp.263-325. Elsevier Science.
    • Julivert, M. and Marcos, A., 1973. Superimposed folding under flexural conditions in the Cantabrian Zone (Hercynian Cordillera, northwest Spain). American Journal of Science, Vol.273(5), pp.353-375.
    • Julivert, M., 1971. Decollement tectonics in the Hercynian Cordillera of Northwest Spain. American Journal of Science, Vol.270(1), pp.1-29.
    • Julivert, M., 1978. Hercynian orogeny and Carboniferous paleogeography in Northwestern Spain: A model of deformation-sedimentation relationships. Zeitschrift der Deutschen Geologischen Gesellschaft, Vol.129, pp.565-592.
    • Julivert, M., Fontboté, J., Ribeiro, A. and Conde, L., 1972. Mapa Tectonico de la Penınsula Iberica Y Baleares, Escala 1⁄ 1 000 000. Instituto Geológico y Minero de Espana, Madrid.
    • Kampunzu, A.B., Cailteux, J.L.H., Moine, B. and Loris, H.N.B.T., 2005. Geochemical characterisation, provenance, source and depositional environment of ‗Roches Argilo-Talqueuses' (RAT) and Mines Subgroups sedimentary rocks in the Neoproterozoic Katangan Belt (Congo): Lithostratigraphic implications. Journal of African Earth Sciences, Vol.42(1-5), pp.119-133.
    • Kato, Y., Nakao, K. and Isozaki, Y., 2002. Geochemistry of Late Permian to Early Triassic pelagic cherts from southwest Japan: implications for an oceanic redox change. Chemical Geology, Vol.182(1), pp.15-34.
    • Kegel, W., 1929. Das Gotlandium in den kantabrischen Ketten Nordspaniens. Zeitschrift der Deutschen Geologischen Gesellschaft, Vol.81, pp.35-62.
    • Le Heron, D.P. and Craig, J., 2008. First-order reconstructions of a Late Ordovician Saharan ice sheet. Journal of the Geological Society, London, Vol.165(1), pp.19-29.
    • Le Heron, D.P., Craig, J. and Etienne, J.L., 2009. Ancient glaciations and hydrocarbon accumulations in North Africa and the Middle East. Earth-Science Reviews, Vol.93(3-4), pp.47-76.
    • Le Heron, D.P., Ghienne, J., El Houicha, M., Khoukhi, Y. and Rubino, J., 2007. Maximum extent of ice sheets in Morocco during the Late Ordovician glaciation. Palaeogeography, Palaeoclimatology, Palaeoecology, Vol.245(1-2), pp.200-226.
    • Le Heron, D.P., Khoukhi, Y., Paris, F., Ghienne, J. and Le Herissé, A., 2008. Black shale, grey shale, fossils and glaciers: Anatomy of the Upper Ordovician-Silurian succession in the Tazzeka Massif of eastern Morocco. Gondwana Research, Vol.14(3), pp.483-496.
    • Le Heron, D.P., Meinhold, G., Page, A. and Whitham, A., 2013. Did lingering ice sheets moderate anoxia in the Early Palaeozoic of Libya? Journal of the Geological Society, Vol.170(2), pp.327-339.
    • Lee, Y.I., 2009. Geochemistry of shales of the Upper Cretaceous Hayang Group, SE Korea: Implications for provenance and source weathering at an active continental margin. Sedimentary Geology, Vol.215(1-4), pp.1-12.
    • Leton, T.M., Crouch, M., Johnson, M., Pires, N. and Dolan, L., 2012. First plants cooled the Ordovician. Nature Geoscience, Vol.5, pp.86-89.
    • Lev, S.M. and Filer, J.K., 2004. Assessing the impact of black shale processes on REE and the U-Pb isotope system in the southern Appalachian Basin. Chemical Geology, Vol.206(3-4), pp.393-406.
    • Lewis, S.E., Henderson, R.A., Dickens, G.R., Shields, G.A. and Coxhell, S., 2010. The geochemistry of primary and weathered oil shale and coquina across the Julia Creek vanadium deposit (Queensland, Australia). Mineralium Deposita, Vol.45(6), pp.599-620.
    • Limburg, K.E., 1995. Otolith strontium traces environmental history of subyearling American shad Alosa sapidissima. Marine Ecology Progress Series, Vol.119, pp.25-35.
    • Linan, E., Gozalo, R., Palacios, T., Vintaned, J.A.G., Ugidos, J.M. and Mayoral, E., 2002. Cambrian.
    • In: Gibbons, W., and Moreno, T. (eds), The Geology of Spain. London: Geological Society, pp.17-29.
    • Liñán, E., Perejón, A. and Sdzuy, K., 1993. The Lower-Middle Cambrian stages and stratotypes from the Iberian Peninsula: a revision. Geological Magazine, Vol.130, pp.817-833.
    • Linnemann, U., Pereira, F., Jeffries, T.E., Drost, K. and Gerdes, A., 2008. The Cadomian Orogeny and the opening of the Rheic Ocean: The diacrony of geotectonic processes constrained by LA-ICP-MS U-Pb zircon dating (Ossa-Morena and Saxo-Thuringian Zones, Iberian and Bohemian Massifs).
    • Tectonophysics, Vol.461(1-4), pp.21-43.
    • Lipinski, M., Warning, B. and Brumsack, H., 2003. Trace metal signatures of Jurassic/Cretaceous black shales from the Norwegian Shelf and the Barents Sea. Palaeogeography, Palaeoclimatology, Palaeoecology, Vol.190(0), pp.459-475.
    • López de Luchi, M., Cerredo, M., Siegesmund, S., Steenken, A. and Wemmer, K., 2003. Provenance and tectonic setting of the protoliths of the metamorphic complexes of Sierra de San Luis. Revista de la Asociación Geológia Argentina, Vol.58, pp.525-540.
    • Lotze, F., 1945. Zur Gliederung der Varisziden der Iberischen Meseta. Geotektonische Forschungen, Vol.6, pp.78-92.
    • Lotze, F., 1956. Das Präkambrium Spaniens. Neues Jb. Geol. Paläont. Mh., Vol.8, pp.373-380.
    • Loydell, D., Butcher, A., Frýda, J., Lüning, S. and Fowler, M., 2009. Lower Silurian ―hot shales‖ in Jordan: a new depositional model. Journal of Petroleum Geology, Vol.32(3), pp.261-270.
    • Loydell, D.K., 1998. Early Silurian sea-level changes. Geological Magazine, Vol.135(4), pp.447-471.
    • Lüning, S. and Kolonic, S., 2003. Uranium spectral gamma-ray response as a proxy for organic richness in black shales: applicability and limitations. Journal of Petroleum Geology, pp.153-174.
    • Lüning, S. and Kolonic, S., 2006. Uranium as a proxy for organic richness in black shales: applicability and limitations. Journal of Petroleum Geology, Vol.26(2), pp.153-174.
    • Lüning, S., Archer, R., Craig, J. and Loydell, D., 2003a. The Lower Silurian ‗Hot Shales' and ‗Double Hot Shales' in North Africa and Arabia. The geology of northwest Libya (Ghadamis, Jifarah, Tarabulus and Sabratah basins): Tripoli, Earth Science Society of Libya, Vol.3, pp.91-105.
    • Lüning, S., Craig, J., Loydell, D.K., Štorch, P. and Fitches, B., 2000. Lower Silurian `hot shales' in North Africa and Arabia: regional distribution and depositional model. Earth-Science Reviews, Vol.49(1-4), pp.121-200.
    • Lüning, S., Kolonic, S., Loydell, D.K. and Craig, J., 2003b. Reconstruction of the original organic richness in weathered Silurian shale outcrops (Murzuq and Kufra basins, southern Libya). GeoArabia, Vol.8(3). pp.299-308.
    • Lüning, S., Loydell, D.K., Štorch, P., Shahin, Y. and Craig, J., 2006. Origin, sequence stratigraphy and depositional environment of an Upper Ordovician (Hirnantian) deglacial black shale, JordanDiscussion. Palaeogeography, Palaeoclimatology, Palaeoecology, Vol.230(3-4), pp.352-355.
    • Lüning, S., Shahin, Y., Loydell, D.K., Al-Rabi, H.T., Masri, A., Tarawneh, B. and Kolonic, S., 2005.
    • Anatomy of a world-class source rock: Distribution and depositional model of Silurian organic rich shales in Jordan and implications for hydrocarbon potential. AAPG Bulletin, Vol.89(10), pp.1397-1427.
    • Lyons, T.W., Werne, J.P., Hollander, D.J. and Murray, R.W., 2003. Contrasting sulfur geochemistry and Fe/Al and Mo/Al ratios across the last oxic-to-anoxic transition in the Cariaco Basin, Venezuela.
    • Chemical Geology, Vol.195(1-4), pp.131-157.
    • Maas, K., 1974. The geology of Liebana, Cantabrian Mountains, Spain: deposition and deformation in a flysch area. Leidse Geologische Mededelingen, Vol.49. pp.379-465.
    • Mac Niocaill, C.M., Van der Pluijm, B.A., and Van der Voo, R., 1997. Ordovician Palegeography and the evolution of the Iapetus Ocean. Geology, Vol.25(2), pp.159-162.
    • Mackenzie, F.T., 2005. Sediments, Diagenesis, and Sedimentary Rocks. Treatise on Geochemistry, Vol.7, pp.425. Elsevier-Pergamon. (Oxford).
    • Małkowski, K. and Racki, G., 2009. A global biogeochemical perturbation across the Silurian-Devonian boundary: ocean-continent-biosphere feedbacks. Paleogeography, Paleoclimatology, Paleoecology, Vol.276(1-4), pp.244-254.
    • Marcos, A. and Pulgar, J.A., 1982. An approach to the tectonostratigraphic evolution of the Cantabrian foreland thrust and fold belt, Hercynian Cordillera of NW Spain. Neues Jahrbuch Geol. Paläont.
    • Abhandlungen, Vol.163, pp.256-260.
    • Marcos, A., 1973. Las series del Paleozoico Inferior y la estructura herciniana del Occidente de Asturias (NW. de España). Trabajos de Geología, Vol.6(6), pp.3-113.
    • Marshall, J.E.A., 2000. Palynofacies and orbital cyclicity: an example from the Silurian of Saudi Arabia. In: Al-Hajri, S., and Owens, B., (eds), Stratigraphic palynology of the Palaeozoic of Saudi Arabia. Bahrain, Gulf PetroLink, pp.216-231.
    • Monod, O., Kozlu, H., Ghienne, J.F., Dean, W.T., Günay, Y., Hérissé, A.L., Paris, F. and Robardet, M., 2003. Late Ordovician glaciation in southern Turkey. Terra Nova, Vol.15(4), pp.249-257.
    • Moore, G.T., Hayashida, D.N. and Ross, C.A., 1993. Late Early Silurian (Wenlockian) general circulation model-generated upwelling, graptolitic black shales, and organic-rich source rocks-An accident of plate tectonics? Geology, Vol.21(1), pp.17-20.
    • Moosavirad, S.M., Janardhana, M.R., Sethumadhav, M.S., Moghadam, M.R. and Shankara, M., 2011.
    • Geochemistry of lower Jurassic shales of the Shemshak Formation, Kerman Province, Central Iran: Provenance, source weathering and tectonic setting. Chemie der Erde - Geochemistry, Vol.71(3), pp.279-288.
    • Müller, P.J. and Suess, E., 1979. Productivity, sedimentation rate, and sedimentary organic matter in the oceans-I. Organic carbon preservation. Deep Sea Research Part A.Oceanographic Research Papers, Vol.26(12), pp.1347-1362.
    • Munnecke, A., Calner, M., Harper, D.A.T. and Servais, T., 2010. Ordovician and Silurian sea-water chemistry, sea level, and climate: A synopsis. Palaeogeography, Palaeoclimatology, Palaeoecology, Vol.296(3-4), pp.389-413.
    • Murphy, A.E., Sageman, B.B., Hollander, D.J., Lyons, T.W. and Brett, C.E., 2000. Black shale deposition and faunal overturn in the Devonian Appalachian basin: Clastic starvation, seasonal watercolumn mixing, and efficient biolimiting nutrient recycling. Paleoceanography, Vol.15(3), pp.280-291.
    • Murray, R., Leinen, M. and Isern, A., 1993. Biogenic flux of Al to sediment in the central equatorial Pacific Ocean: Evidence for increased productivity during glacial periods. Paleoceanography, Vol.8(5), pp.651-670.
    • Perroud, H., Calza, F. and Khattach, D., 1991. Paleomagnetism of the Silurian volcanism at Almaden, southern Spain. Journal of Geophysical Research, Vol.96(B2), pp.1949-1962.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article