LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Silvestre, Oscar Ricardo
Languages: English
Types: Doctoral thesis
Subjects: QR180, R1
There is a need to perform comprehensive cell biology studies transferable across culture platforms using innovative cellular models. The higher purpose is to bridge the gap between in vitro cell culture and in vivo models. In this thesis a significant advance is presented in the embedding of an innovative optical biophotonic capability for the dynamic interrogation and single cell tracking of human osteosarcoma cells encapsulated in the hollow fiber (HF) platform. Two approaches have been implemented: quantum dot (QD) nanoparticles providing proliferative and cell cycle readouts and an in-fiber light illumination providing global features of particle and cell density. An in vitro HF encapsulation model was developed and characterised against standard two-dimensional tissue culture (TC) using the human osteosarcoma U-2 OS cell line expressing a cell cycle fluorescent reporter (cyclin Bl-GFP). Analysis of the packing and orientation of cells in the HF revealed that they grow like an anchorage dependent adherent layer. Overall cells in the fiber displayed a slower cell cycle traverse and a differential sensitivity to clinically relevant doses of the anticancer mitosis-inhibiting agent Taxol compared to cells under normal TC conditions. Comprehensive gene profiling, with bioinformatics and ontology network analysis, showed that the HF cells presented high steroid related but low differentiation gene expression. Specific biomarkers were indentified, and it is suggested that the HF model displays features that are closer to an in vivo tumour. A flow cytometry cell-tracking approach using QD labelling was validated and applied to the HF model for the first time. This represents an "embedded" biophotonic system where the QD sensors are integrated directly into the seeded cell population and then redistributed through the daughter cells, thus reflecting patterns of lineage expansion. This provides sub-population parameterized information on cell-cell heterogeneity and cell division. A biophotonic HF prototype comprising the integration of direct coupled-light excitation in the HF was conceived, this revealed the potential and limitations to detect die presence of cells inside the HF lumen by analysing light attenuation changes. Finally a "systems cytometry" acquisition concept has been proposed, comprising the use of embedded engineered nanoparticles as single cell "nano-memory" biophotonic intracellular probes.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • F. S. Woutera, P. J. Verveer, and P. I. Basdaens, “Imaging biochemistry inside cells," Trends Cell Biol. 11, 203-211 (2001).
    • Photobid. Sci. 4,13-22 (2005).
    • R. Cubcddu, P. Taroni, and G. Valentini, “Time-gated imaging system for tumor diagnosis,” O pt Eng 32, 320-324 (1993).
    • C. G. Morgan, A. C. Mitchell, and J. G. Murray, 'Nanosecond Time-Resolved Fluorescence Microscopy; Principles and Practice,” Proc.R. Microsc. Soc. 1,463-466 (1990).
    • E. P. Buurman, P. Sanders, A. Draaijer, H. C. Gertitsen, J. J. F. van Veen, P. M. Houtpt and Y. K. Levine, “Fluorescence lifetime imaging using a confocal laser scanning microscope,” Scanning 14,155-159 (1992).
    • I. Bugiel K. Konig, and H Wabnitz, “Investigation o f cdls by fluorescence laser scanning microscopy with subnanosecond time resolution,” Lasers Life Sci. 3,47-53 (1989).
    • 7. X. F. Wang, T. Uchida, D. M. Coleman, and S. Minami, “A 2-dimensional fluorescence lifetime imagingsystem using a gated image intensifier,” Appl Spectrosc. 45,360-366 (1991).
    • 8. K. Dowling, M. J. Dayel, M. J. Lever, P. M. W. French, J. D. Hares, and A. K. L. Dymoke-Bradshaw, “Fluorescence lifetime imaging with picosecond resolution far biomedical applications,” O p t L e a 23,810- 812 (1998).
    • 9. J. R- Lakowicz, H. Szmacinskia, K. Nowaczyka, K. W. Berndta, and M. Johnson, “Fluorescence lifetime imaging,” Anal. Biochem. 292,316-330 (1992).
    • 10. R. M. Clegg, G. Marriott B. A Feddersen, E. Gratton, and T. M. Jovin, “Sensitive and rapid determinations of fluorescence lifetimes in the frequency domain in a light-microscope,” Biophys. J. 57, A375-A375 (1990).
    • 11. D. R. Matthews. H. D. Summers, K. Njoh, R. J. Errington, P. J. Smith, P. Barber, S. Ameer-Beg, and B. Vojnovic, 'Technique for measurement of fluorescence lifetime by use of stroboscopic excitation and continuous-wave detection,” Appl. O pt 45,2115-2123 (2006).
    • 12. Y. Sakai and S. Hirayama. “A fast deconvolution method to analyze fluorescence decays when the excitation pulse repetition period is less than the decay times,” J. Lumin. 39,145-151 (1988).
    • 13. M. MOBer. R. Ohauharali, K. Visscbcr, and O. Brakenhoff “DouMe-piilaa fluorescence lifetime jraagjpg in confocal microscopy.” J. Microsc. 177. 171-179 (1994).
    • 14. H. Nyquitt “Certain topics in telegraph transmission theory,” Dans. Am. Inst Elsctr. Eng. 47, 617-644 (1928).
    • 15. T. Ng, A. Squire, G. Hansra, F. Bomancin, C. Prevostd, A. Hanby, W. Harris, D. Barnes, S. Schmidt H. McBcr, P. L H. Basdaens, and P. J. Pirker. “bulging protein kinase C a activation in cells,” Science 2*3, 2085-2089(1999).
    • 16. O. Holub, M. J. Seufferheld, C. Gohllre, Govhtdjce, and R. M. Clegg, “Fluorescence lifetime imaging (FLI) in real tim e- a new technique in photosynthesis research,” Photosynthetica 38,581-599 (2000).
    • 17. A. V. Agrooslcaia, L. Tertoolen, and H. C. Gerritsen, H igh frame rate fluorescence lifetime imagmg," J. Phys. D 3 6 1655-1662 (2003).
    • 18. D. J. Stephens and V. J. Allan, “Light microscopy techniques for live cell imaging,” Science 3M , 82-86 (2003).
    • 19. B. Dubertret P. Skourides, D. J. Norris, V. Noireaux, A H. Brivanlou, and A Ubchabcr, “b vivo imaging of quantum dots encapsulated in phospholipid micelles,” Science 298,1759-1762 (2002).
    • 20. J. K. JaiswaL H. Mathmsst J. M. Mauro, and S. M. Simon, “Long-term multiple color imaging of live cells using quantum dot bioconjugates.” Nature Biotech. 21,47-51 (2002).
    • 21. A. Hoshino, K. Hanaki, K. Suzuki, and K. Yamamoto, “Applications of T-lymphoma labelled with fluorescent quantum dots to cell tracing markers in mouse body,” Biochem. and Biophys. Res. Commun. 314,46-53(2003).
    • 22. Y. S. Liu, Y. H. Sun, P. T. Vernier, C. H. Liang, S. Y. C. Chong, and M. A. Gundersen, “pH-sensitive photolummescence of CdSe/ZnSe/ZnS quantum dots in human ovarian cancer cells,” J. Phys. Chem. I l l , 2872-2878(2007).
    • 23. Y. H. Sun, Y. S. Liu, P. T. Vernier, C. H. Liang, S. Y. Chong, L. Marcu, and M. A Gundersen, “Photostability and pH sensitivity of CdSe/ZnSe/ZnS quantum dots in living cells,” Nanotechnology 17, 4469-4476(2006).
    • 24. S. J. Clarke, C. A Hollmann, Z. Zhang, D. Suffem, S. E. Bradfotth, N. M. Dimitrijevic, W. G. Minarik. and J. I- Nadeau, "Photophysics of dopamine-modified quantum dots and effects on biological systems,” Nature Materials 5,409-417 (2006).
    • 25. S. R. Cordero, P. J. Carson, R. A Estabroak, G. F. Strouse, and S. K. Buratto, “Photo-activated luminescence of CdSe Quantum dot monolayers,” J. Phys. Chem. 194,12137-12142(2000).
    • 26. N. E. Korunska, M. Dybiec, L. Zhukov, S. Ostapenko, and T. Zhukov, “Reversible and non-reversible photo-enhanced luminescence m CdSe/ZnS quantum dots,” Semicood. Sci. Techno). 29, 876-881 (2005).
    • 27. M. Nirmal, B. O. Dabbousi, M. G. Bawendi, J. J. Macklin, J. K. Trautman, T. D. Harris, and L E. Bros, "Fluorescence intcrmitiency in single cadmium sclenide nanocrystals,” Nature 383,802-804 (1996).
    • 28. C. D. McGuinness, K. Sagoo, D. McLoskey, and D. J. S. Bitch, “A new sub-nanosecond LED at 280nm: ________ application to protein fluorescence.” Meas. Sci. Technol. 15. L19-L22 (2004).________________________ 1.
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
    61
    61%
  • No similar publications.

Share - Bookmark

Funded by projects

Cite this article