Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Zhu, Wen; chong, baohe; Qin, Ke; Guan, Li; Hou, Xianghui; Chen, George Z. (2016)
Publisher: Royal Society of Chemistry
Languages: English
Types: Article
We report the formation and characterization of Cuprous oxide/Titanium dioxide (Cu2O/TiO2) nanotube-array coaxial heterogeneous structure, which is supposed to have potential applications in photo-induced water decomposition and organic pollutant degradation. Such structure is formed by coating nano-particles of Cu2O onto titanium dioxide nanotube-array walls via multiple-cycle chemical adsorption plus reduction method (MC-CAR). The practical deposition technique employs a soaking step to separate the adsorption and reduction processes, thus enhancing the controllability of deposition rate and preventing the clogging of nanotube pores. The size of Cu2O nano-particles is adjusted by changing the glucose concentration in the reaction solutions. As a result, compact nano-particle film with sufficiently small crystal sizes is uniformly covered on the tube walls, resulting in the formation of coaxial heterogeneous structure. The detailed synthesis process and the surface morphology, structure, photoelectric properties, and hydrogen evolution ability of the Cu2O/TiO2 nanotube-array with coaxial heterogeneous structure are systematically investigated. The resulting film shows a stable hydrogen production rate of 3.1 mLcm-2h-1, which can be targeted for energy application in relation with solar energy driven production of hydrogen from water.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] Y.-H. Pai, S.-Y. Fang, J. Power Sources, 230 (2013) 321-326.
    • [2] K. Lalitha, G. Sadanandam, V.D. Kumari, M. Subrahmanyam, B. Sreedhar, N.Y. Hebalkar, J. Phys. Chem. C, 114 (2010) 22181- 22189.
    • [3] J. Fenoll, P. HellĂ­n, P. Flores, I. Garrido, S. Navarro, Journal of the Taiwan Institute of Chemical Engineers, 45 (2013) 981-988.
    • [4] M. Kaneko, S. Suzuki, H. Ueno, J. Nemoto, Y. Fujii, Electrochim. Acta, 55 (2010) 3068-3074.
    • [5] S. Sato, R. Nakamura, S. Abe, Applied Catalysis A: General, 284 (2005) 131-137.
    • [6] D. Liu, F. Liu, J. Liu, J. Power Sources, 213 (2012) 78-82.
    • [7] E. Bae, W. Choi, Environ. Sci. Technol., 37 (2003) 147-152.
    • [8] W. Zhu, X. Liu, H. Liu, D. Tong, J. Yang, J. Peng, J. Am. Chem. Soc., 132 (2010) 12619-12626.
    • [9] L. Xiang, X. Zhao, C. Shang, J. Yin, J. Colloid Interface Sci., 403 (2013) 22-28.
    • [10] Z.L. Hua, Z.Y. Dai, X. Bai, Z.F. Ye, H.X. Gu, X. Huang, Journal of Hazardous Materials, 293 (2015) 112-121.
    • [11] W.-T. Sun, Y. Yu, H.-Y. Pan, X.-F. Gao, Q. Chen, L.-M. Peng, J. Am. Chem. Soc., 130 (2008) 1124-1125.
    • [12] V. Brus, M. Ilashchuk, Z. Kovalyuk, P. Maryanchuk, K. Ulyanytsky, Semicond. Sci. Technol., 26 (2011) 125006.
    • [13] C. Lu, L. Qi, J. Yang, X. Wang, D. Zhang, J. Xie, J. Ma, Adv. Mater., 17 (2005) 2562-2567.
    • [14] H. Gao, J.Y. Zhang, R.M. Wang, M. Wang, Applied Catalysis B-Environmental, 172 (2015) 1-6.
    • [15] W. Siripala, A. Ivanovskaya, T.F. Jaramillo, S-H. Baeck, E.W. McFarland, Solar Energy Materials and Solar Cells 77 (2003) 229- 237.
    • [16] C. Shifu, Z. Sujuan, L. Wei, Z. Wei, Journal of nanoscience and nanotechnology, 9 (2009) 4397-4403.
    • [17] L. Yang, S. Luo, Y. Li, Y. Xiao, Q. Kang, Q. Cai, Environ. Sci. Technol., 44 (2010) 7641-7646.
    • [18] S. Zhang, S. Zhang, F. Peng, H. Zhang, H. Liu, H. Zhao, Electrochem. Commun., 13 (2011) 861-864.
    • [19] Z. Jin, G.T. Fei, X.Y. Hu, M. Wang, L. De Zhang, Journal of Nanoengineering and Nanomanufacturing, 2 (2012) 49-53.
    • [20] Y.-h. Xu, D.-h. Liang, M.-l. Liu, D.-z. Liu, Mater. Res. Bull., 43 (2008) 3474-3482.
    • [21] Y. Hou, X. Li, X. Zou, X. Quan, G. Chen, Environ. Sci. Technol., 43 (2008) 858-863.
    • [22] L. Huang, F. Peng, H. Wang, H. Yu, Z. Li, Catal. Commun., 10 (2009) 1839-1843.
    • [23] H.Y. Xu, C. Chen, L. Xu, J.K. Dong, Thin Solid Films, 527 (2013) 76-80.
    • [24] Z.H. Gao, Z.D. Cui, S.L. Zhu, Y.Q. Liang, Z.Y. Li, X.J. Yang, Journal of Power Sources, 283 (2015) 397-407.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article