LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Pursehouse, R.C.; Fleming, P.J. (2001)
Publisher: Department of Automatic Control and Systems Engineering
Languages: English
Types: Book
Subjects:
The multiobjective genetic algorithm (MOGA) has been applied to various real-world problems in a variety of fields, most prominently in control systems engineering, with considerable success. However, a recent empirical analysis of multi-objective evolutionary algorithms (MOEA's) has suggested that a MOGA-based algorithm performed poorly across a diverse set of two-objective test problems. In this report, it is shown that a conventional MOGA with standard settings can provide improved performance, but this still compares unfavourably to the best-performing contemporary MOEA, the Strength Pareto Evolutionary Algorithm (SPEA). The importance of the MOEA, as a framework is stressed and consequently, a real-coded MOGA for real-parameter multi-criterion problems is developed using modern gudelines for the design of evolutionary algorithms. This MOGA is shown to outperform the "best" MOEA, rather that a considered implementation of the methodology is required in order to reap full rewards. This study also questions the effectiveness of the traditional fitness sharing method of niching, with respect to the current set of multiobjective benchmark problems.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article