LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Crooker, N. U.; Appleton, E. M.; Schwadron, N. A.; Owens, M.J. (2010)
Publisher: American Geophysical Union
Languages: English
Types: Article
Subjects:

Classified by OpenAIRE into

arxiv: Physics::Space Physics, Astrophysics::Solar and Stellar Astrophysics
The high variability of the intensity of suprathermal electron flux in the solar wind\ud is usually ascribed to the high variability of sources on the Sun. Here we demonstrate\ud that a substantial amount of the variability arises from peaks in stream interaction\ud regions, where fast wind runs into slow wind and creates a pressure ridge at the\ud interface. Superposed epoch analysis centered on stream interfaces in 26 interaction\ud regions previously identified in Wind data reveal a twofold increase in 250 eV flux\ud (integrated over pitch angle). Whether the peaks result from the compression there or are\ud solar signatures of the coronal hole boundary, to which interfaces may map, is an open\ud question. Suggestive of the latter, some cases show a displacement between the electron and\ud magnetic field peaks at the interface. Since solar information is transmitted to 1 AU much\ud more quickly by suprathermal electrons compared to convected plasma signatures, the\ud displacement may imply a shift in the coronal hole boundary through transport of open\ud magnetic flux via interchange reconnection. If so, however, the fact that displacements\ud occur in both directions and that the electron and field peaks in the superposed epoch\ud analysis are nearly coincident indicate that any systematic transport expected from\ud differential solar rotation is overwhelmed by a random pattern, possibly owing to transport\ud across a ragged coronal hole boundary.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Antiochos, S. K., C. R. Devore, J. T. Karpen, and Z. Mikić (2007), Structure and dynamics of the Sun's open magnetic field, Astrophys. J., 671, 936-946, doi:10.1086/522489.
    • Borovsky, J. E. (2008), Flux tube texture of the solar wind: Strands of the magnetic carpet at 1 AU?, J. Geophys. Res., 113, A08110, doi:10.1029/ 2007JA012684.
    • Crooker, N. U., and C. Pagel (2008), Residual strahls in solar‐wind electron dropouts: Signatures of magnetic connection to the Sun, disconnection, or interchange reconnection?, J. Geophys. Res., 113, A02106, doi:10.1029/2007JA012421.
    • Crooker, N. U., and G. L. Siscoe (1990), On mapping flux transfer events to the ionosphere, J. Geophys. Res., 95, 3795-3799, doi:10.1029/ JA095iA04p03795.
    • Crooker, N. U., A. J. Lazarus, R. P. Lepping, K. W. Ogilvie, J. T. Steinberg, A. Szabo, and T. G. Onsager (1996), A two‐stream, four‐sector, recurrence pattern: Implications from Wind for the 22‐year geomagnetic activity cycle, Geophys. Res. Lett., 23, 1275-1278, doi:10.1029/96GL00031.
    • Crooker, N. U., J. T. Gosling, and S. W. Kahler (2002), Reducing heliospheric magnetic flux from coronal mass ejections without disconnection, J. Geophys. Res., 107(A2), 1028, doi:10.1029/2001JA000236.
    • Edmondson, J. K., S. K. Antiochos, C. R. DeVore, B. J. Lynch, and T. H. Zurbuchen (2010), Interchange reconnection and coronal hole dynamics, Astrophys. J., 714, 517-531, doi:10.1088/0004-637X/714/1/517.
    • Feldman, W. C., J. R. Asbridge, S. J. Bame, J. T. Gosling, and D. S. Lemons (1978), Characteristic electron variations across simple highspeed solar wind streams, J. Geophys. Res., 83, 5285-5295, doi:10.1029/JA083iA11p05285.
    • Fisk, L. A. (1996), Motion of the footpoints of heliospheric magnetic field lines at the Sun: Implications for recurrent energetic particle events at high heliographic latitudes, J. Geophys. Res., 101, 15,547-15,553, doi:10.1029/96JA01005.
    • Fisk, L. A., T. H. Zurbuchen, and N. A. Schwadron (1999), On the coronal magnetic field: Consequences of large‐scale motion, Astrophys. J., 521, 868-877, doi:10.1086/307556.
    • Gosling, J. T., J. R. Asbridge, S. J. Bame, and W. C. Feldman (1978), Solar wind stream interfaces, J. Geophys. Res., 83, 1401-1412, doi:10.1029/ JA083iA04p01401.
    • Gosling, J. T., R. M. Skoug, and D. J. McComas (2003), Solar electron bursts at very low energies: Evidence for acceleration in the high corona?, Geophys. Res. Lett., 30(13), 1697, doi:10.1029/2003GL017079.
    • Gosling, J. T., C. A. de Koning, R. M. Skoug, J. T. Steinberg, and D. J. McComas (2004), Dispersionless modulations in low‐energy solar electron bursts and discontinuous changes in the solar wind electron strahl, J. Geophys. Res., 109, A05102, doi:10.1029/2003JA010338.
    • Lepping, R. L., et al. (1995), The Wind magnetic field investigation, Space Sci. Rev., 71, 207-229, doi:10.1007/BF00751330.
    • Lin, R. P., et al. (1995), A three‐dimensional plasma and energetic particle investigation for the Wind spacecraft, Space Sci. Rev., 71, 125-153, doi:10.1007/BF00751328.
    • McPherron, R. L., and G. L. Siscoe (2004), Probabilistic forecasting of geomagnetic indices using solar wind air mass analysis, Space Weather, 2, S01001, doi:10.1029/2003SW000003.
    • McPherron, R. L., G. L. Siscoe, N. U. Crooker, and C. N. Arge (2005), Probabilistic forecasting of the Dst index, in The Inner Magnetosphere: Physics and Modeling, Geophys. Monogr. Ser, vol. 155, edited by T. I. Pulkkinen, N. A. Tsyganenko, and R. H. W. Freidel, pp. 203-210, AGU, Washington, D.C.
    • Merkin, V. G., and N. U. Crooker (2008), Solar concept of flux transport by interchange reconnection applied to the magnetosphere, J. Geophys. Res., 113, A00B04, doi:10.1029/2008JA013140.
    • Nash, A. G., N. R. Sheeley Jr., and Y.‐M. Wang (1988), Mechanisms for the rigid rotation of coronal holes, Sol. Phys., 117, 359-389, doi:10.1007/BF00147253.
    • Ogilvie, K. W., et al. (1995), SWE, a comprehensive plasma instrument for the Wind spacecraft, Space Sci. Rev., 71, 55-77, doi:10.1007/ BF00751326.
    • Pagel, C., N. U. Crooker, D. E. Larson, S. W. Kahler, and M. J. Owens (2005), Understanding electron heat flux signatures in the solar wind, J. Geophys. Res., 110, A01103, doi:10.1029/2004JA010767.
    • Pizzo, V. (1978), A three‐dimensional model of corotating streams in the solar wind, 1. Theoretical foundations, J. Geophys. Res., 83, 5563-5572, doi:10.1029/JA083iA12p05563.
    • Scime, E. E., S. J. Bame, W. C. Feldman, S. P. Gary, and J. L. Phillips (1994), Regulation of the solar wind electron heat flux from 1 to 5 AU: Ulysses observations, J. Geophys. Res., 99, 23,401-23,410.
    • Wang, Y.‐M., and N. R. Sheeley Jr. (2004), Footpoint switching and the evolution of coronal holes, Astrophys. J., 612, 1196-1205, doi:10.1086/ 422711.
    • Wang, Y.‐M., and N. R. Sheeley Jr. (2009), Understanding the geomagnetic precursor of the solar cycle, Astrophys. J., 694, L11, doi:10.1088/ 0004-637X/694/1/L11.
    • Wimmer‐Schweingruber, R. F., R. von Steiger, and R. Paerli (1997), Solar wind stream interfaces in corotating interaction regions: SWICS/Ulysses results, J. Geophys. Res., 102, 17,407-17,417, doi:10.1029/97JA00951.
    • Zhao, L., and L. Fisk (2010), Comparison of two solar minima: narrower streamer stalk region and conserved open magnetic flux in the region outside of streamer stalk, in SOHO-23: Understanding a Peculiar Solar Minimum, edited by S. Cranmer, et al., ASP Conf. Proc., vol. 428, pp. 229-234, Astronomical Soc. Pacific, San Francisco. E. M. Appleton and N. U. Crooker, Center for Space Physics, Boston University, 725 Commonwealth Ave., Boston, MA 02215, USA.
    • () M. J. Owens, Space Environment Physics Group, Department of Meteorology, University of Reading, Earley Gate, PO Box 243, Reading RG6 6BB, UK.
    • N. A. Schwadron, Space Science Center, University of New Hampshire, 354 Morse Hall, 8 College Rd., Durham, NH 03824‐3525, USA.
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

  • NSF | SHINE: Studies of the Helio...
  • NSF | SHINE: Studies of ICME-CME ...

Cite this article