Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Baran, Anthony J.; Hill, Peter; Furtado, Kalli; Field, Paul; Manners, James (2014)
Publisher: American Meteorological Society
Languages: English
Types: Article

Classified by OpenAIRE into

arxiv: Physics::Atmospheric and Oceanic Physics
A new coupled cloud physics–radiation parameterization of the bulk optical properties of ice clouds is presented. The parameterization is consistent with assumptions in the cloud physics scheme regarding particle size distributions (PSDs) and mass–dimensional relationships. The parameterization is based on a weighted ice crystal habit mixture model, and its bulk optical properties are parameterized as simple functions of wavelength and ice water content (IWC). This approach directly couples IWC to the bulk optical properties, negating the need for diagnosed variables, such as the ice crystal effective dimension. The parameterization is implemented into the Met Office Unified Model Global Atmosphere 5.0 (GA5) configuration. The GA5 configuration is used to simulate the annual 20-yr shortwave (SW) and longwave (LW) fluxes at the top of the atmosphere (TOA), as well as the temperature structure of the atmosphere, under various microphysical assumptions. The coupled parameterization is directly compared against the current operational radiation parameterization, while maintaining the same cloud physics assumptions. In this experiment, the impacts of the two parameterizations on the SW and LW radiative effects at TOA are also investigated and compared against observations. The 20-yr simulations are compared against the latest observations of the atmospheric temperature and radiative fluxes at TOA. The comparisons demonstrate that the choice of PSD and the assumed ice crystal shape distribution are as important as each other. Moreover, the consistent radiation parameterization removes a long-standing tropical troposphere cold temperature bias but slightly warms the southern midlatitudes by about 0.5 K.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Baran, A. J., 2005: The dependence of cirrus infrared radiative properties on ice crystal geometry and shape of the sizedistribution function. Quart. J. Roy. Meteor. Soc., 131, 1129- 1142, doi:10.1256/qj.04.91.
    • --, 2007: The impact of cirrus microphysical and macrophysical properties on upwelling far-infrared spectra. Quart. J. Roy. Meteor. Soc., 133, 1425-1437, doi:10.1002/qj.132.
    • --, 2009: A review of the light scattering properties of cirrus. J. Quant. Spectrosc. Radiat. Transf., 110, 1239-1260, doi:10.1016/ j.jqsrt.2009.02.026.
    • --, 2012: From the single-scattering properties of ice crystals to climate prediction: A way forward. Atmos. Res., 112, 45-69, doi:10.1016/j.atmosres.2012.04.010.
    • --, and P. N. Francis, 2004: On the radiative properties of cirrus cloud at solar and thermal wavelengths: A test of model consistency using high-resolution airborne radiance measurements. Quart. J. Roy. Meteor. Soc., 130, 763-778, doi:10.1256/qj.03.151.
    • --, and L.-C. Labonnote, 2007: A self-consistent scattering model for cirrus. I: The solar region. Quart. J. Roy. Meteor. Soc., 133, 1899-1912, doi:10.1002/qj.164.
    • --, P. J. Connolly, and C. Lee, 2009: Testing an ensemble model of cirrus ice crystals using midlatitude in situ estimates of ice water content, volume extinction coefficient, and the total solar optical depth. J. Quant. Spectrosc. Radiat. Transf., 110, 1579-1598, doi:10.1016/j.jqsrt.2009.02.021.
    • --, A. Bodas-Salcedo, R. Cotton, and C. Lee, 2011a: Simulating the equivalent radar reflectivity of cirrus at 94 GHz using an ensemble model of cirrus ice crystals: A test of the Met Office global numerical weather prediction model. Quart. J. Roy. Meteor. Soc., 137, 1547-1560, doi:10.1002/qj.870.
    • --, P. J. Connolly, A. J. Heymsfield, and A. Bansemer, 2011b: Using in situ estimates of ice water content, volume extinction coefficient, and the total solar optical depth obtained during the tropical ACTIVE campaign to test an ensemble model of cirrus ice crystals. Quart. J. Roy. Meteor. Soc., 137, 199-218, doi:10.1002/qj.731.
    • --, R. Cotton, K. Furtado, S. Havemann, L.-C. Labonnote, F. Marenco, A. J. Smith, and J.-C. Thelen, 2014a: A self-consistent scattering model for cirrus. II: The high and low frequencies. Quart. J. Roy. Meteor. Soc., 140, 1039-1057, doi:10.1002/qj.2193.
    • --, K. Furtado, L.-C. Labonnote, S. Havemann, J.-C. Thelen, and F. Marenco, 2014b: On the relationship between the scattering phase function of cirrus and the atmospheric state. Atmos. Chem. Phys. Discuss., 14, 14 109-14 157, doi:10.5194/acpd-14-14109-2014.
    • Baum, B. A., A. J. Heymsfield, P. Yang, and S. T. Bedka, 2005: Bulk scattering properties for the remote sensing of ice clouds. Part I: Microphysical data and models. J. Appl. Meteor., 44, 1885-1895, doi:10.1175/JAM2308.1.
    • --, P. Yang, A. J. Heymsfield, C. G. Schmitt, Y. Xie, A. Bansemer, Y.-X. Hu, and Z. Zhang, 2011: Improvements in shortwave bulk scattering and absorption models for the remote sensing of ice clouds. J. Appl. Meteor. Climatol., 50, 1037-1056, doi:10.1175/ 2010JAMC2608.1.
    • Bozzo, A., T. Maestri, R. Rizzi, and E. Tosi, 2008: Parameterization of single scattering properties of mid-latitude cirrus clouds for fast radiative transfer models using particle mixtures. Geophys. Res. Lett., 35, L16809, doi:10.1029/2008GL034695.
    • Brown, A. R., S. Milton, M. Cullen, B. Golding, J. Mitchell, and A. Shelly, 2012: Unified modeling and prediction of weather and climate: A 25-year journey. Bull. Amer. Meteor. Soc., 93, 1865-1877, doi:10.1175/BAMS-D-12-00018.1.
    • Brown, P. R. A., and P. N. Francis, 1995: Improved measurements of the ice water content in cirrus using a total-water probe. J. Atmos. Oceanic Technol., 12, 410-414, doi:10.1175/ 1520-0426(1995)012,0410:IMOTIW.2.0.CO;2.
    • Cotton, R. J., and Coauthors, 2013: The effective density of small ice particles obtained from in situ aircraft observations of midlatitude cirrus. Quart. J. Roy. Meteor. Soc., 139, 1923-1934, doi:10.1002/qj.2058.
    • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553-597, doi:10.1002/qj.828.
    • Delanoë, J., R. J. Hogan, R. M. Forbes, A. Bodas-Salcedo, and T. H. M. Stein, 2011: Evaluation of ice cloud representation in the ECMWF and UK Met Office models using CloudSat and CALIPSO data. Quart. J. Roy. Meteor. Soc., 137, 2064-2078, doi:10.1002/qj.882.
    • De Leon, R. R., and J. D. Haigh, 2007: Infrared properties of cirrus clouds in climate models. Quart. J. Roy. Meteor. Soc., 133, 273- 282, doi:10.1002/qj.1.
    • Edwards, J. M., and A. Slingo, 1996: Studies with a flexible new radiation code. I: Choosing a configuration for a large-scale model. Quart. J. Roy. Meteor. Soc., 122, 689-719, doi:10.1002/ qj.49712253107.
    • --, S. Havemann, J.-C. Thelen, and A. J. Baran, 2007: A new parameterization for the radiative properties of ice crystals: Comparison with existing schemes and impact in a GCM. Atmos. Res., 83, 19-35, doi:10.1016/j.atmosres.2006.03.002.
    • Field, P. R., and A. J. Heymsfield, 2003: Aggregation and scaling of ice crystal size distributions. J. Atmos. Sci., 60, 544-560, doi:10.1175/ 1520-0469(2003)060,0544:AASOIC.2.0.CO;2.
    • --, R. Wood, P. R. A. Brown, P. H. Kaye, E. Hirst, R. Greenaway, and J. A. Smith, 2003: Ice particle interarrival times measured with a fast FSSP. J. Atmos. Oceanic Technol., 20, 249-261, doi:10.1175/1520-0426(2003)020,0249:IPITMW.2.0.CO;2.
    • --, A. J. Heymsfield, and A. Bansemer, 2006: Shattering and particle interarrival times measured by optical array probes in ice clouds. J. Atmos. Oceanic Technol., 23, 1357-1371, doi:10.1175/ JTECH1922.1.
    • --, --, and --, 2007: Snow size distribution parameterization for midlatitude and tropical ice cloud. J. Atmos. Sci., 64, 4346- 4365, doi:10.1175/2007JAS2344.1.
    • --, --, --, and C. H. Twohy, 2008: Determination of the combined ventilation factor and capacitance for ice crystal aggregates from airborne observations in a tropical anvil cloud. J. Atmos. Sci., 65, 376-391, doi:10.1175/2007JAS2391.1.
    • --, R. J. Cotton, K. McBeath, A. P. Lock, S. Webster, and R. P. Allan, 2014: Improving a convection-permitting model simulation of a cold air outbreak. Quart. J. Roy. Meteor. Soc., 140, 124- 138, doi:10.1002/qj.2116.
    • Francis, P. N., 1995: Some aircraft observations of the scattering properties of ice crystals. J. Atmos. Sci., 52, 1142-1154, doi:10.1175/ 1520-0469(1995)052,1142:SAOOTS.2.0.CO;2.
    • --, A. Jones, R. W. Saunders, K. P. Shine, A. Slingo, and Z. Sun, 1994: An observational and theoretical study of the radiative properties of cirrus. Some results from ICE'89. Quart. J. Roy. Meteor. Soc., 120, 809-848, doi:10.1002/qj.49712051804.
    • Fu, Q., 2007: A new parameterization of an asymmetry factor of cirrus clouds for climate models. J. Atmos. Sci., 64, 4140-4150, doi:10.1175/2007JAS2289.1.
    • --, W. B. Sun, and P. Yang, 1999: Modeling of scattering and absorption by nonspherical cirrus ice particles at thermal infrared wavelengths. J. Atmos. Sci., 56, 2937-2947, doi:10.1175/ 1520-0469(1999)056,2937:MOSAAB.2.0.CO;2.
    • Furtado, K., P. R. Field, R. Cotton, A. J. Baran, 2014: The effects of ice particle fall speed and size distribution on simulated high cloud. Quart. J. Roy. Meteor. Soc., in press.
    • Goody, R. M., J. G. Anderson, and G. R. North, 1998: Testing climate models: An approach. Bull. Amer. Meteor. Soc., 79, 2541-2549, doi:10.1175/1520-0477(1998)079,2541:TCMAA.2.0.CO;2.
    • Gu, Y., K. N. Liou, S. C. Ou, and R. Fovell, 2011: Cirrus cloud simulations using WRF with improved radiation parameterization and increased vertical resolution. J. Geophys. Res., 116, D06119, doi:10.1029/2010JD014574.
    • Heymsfield, A. J., and L. M. Miloshevich, 2003: Parameterizations for the cross-sectional area and extinction of cirrus and stratiform ice cloud particles. J. Atmos. Sci., 60, 936-956, doi:10.1175/ 1520-0469(2003)060,0936:PFTCSA.2.0.CO;2.
    • --, C. Schmitt, A. Bansemer, and C. H. Twohy, 2010: Improved representation of ice particle masses based on observations in natural clouds. J. Atmos. Sci., 67, 3303-3318, doi:10.1175/ 2010JAS3507.1.
    • Hong, G., P. Yang, B. A. Baum, A. J. Heymsfield, and K.-M. Xu, 2009: Parameterization of shortwave and longwave radiative properties of ice clouds for use in climate models. J. Climate, 22, 6287-6312, doi:10.1175/2009JCLI2844.1.
    • Houze, R. A., P. V. Hobbs, P. H. Herzegh, and D. B. Parsons, 1979: Size distributions of precipitation particles in frontal clouds. J. Atmos. Sci., 36, 156-162, doi:10.1175/ 1520-0469(1979)036,0156:SDOPPI.2.0.CO;2.
    • Kokhanovsky, A., 2004: Optical properties of terrestrial clouds. Earth-Sci. Rev., 64, 189-241, doi:10.1016/S0012-8252(03)00042-4.
    • Korolev, A. V., E. F. Emery, J. W. Strapp, S. G. Cober, G. A. Isaac, M. Wasey, and D. Marcotte, 2011: Small ice particles in tropospheric clouds: Fact or artifact? Airborne Icing Instrumentation Evaluation experiment. Bull. Amer. Meteor. Soc., 92, 967-973, doi:10.1175/2010BAMS3141.1.
    • --, --, --, --, and --, 2013: Quantification of the effects of shattering on airborne ice particle measurements. J. Atmos. Oceanic Technol., 30, 2527-2553, doi:10.1175/ JTECH-D-13-00115.1.
    • Kristjánsson, J. E., J. M. Edwards, and D. L. Mitchell, 2000: Impact of a new scheme for optical properties of ice crystals on climates of two GCMs. J. Geophys. Res., 105, 10 063-10 079, doi:10.1029/2000JD900015.
    • Lindner, T. H., and J. Li, 2000: Parameterization of the optical properties for water clouds in the infrared. J. Climate, 13, 1797-1805, doi:10.1175/1520-0442(2000)013,1797: POTOPF.2.0.CO;2.
    • Loeb, N. G., B. A. Wielicki, D. R. Doelling, G. L. Smith, D. F. Keyes, S. Kato, N. Manalo-Smith, and T. Wong, 2009: Toward optimal closure of the earth's top-of-atmosphere radiation budget. J. Climate, 22, 748-766, doi:10.1175/ 2008JCLI2637.1.
    • Lynch, D. K., K. Sassen, D. O'C. Starr, and G. L. Stephens, Eds., 2002: Cirrus. Oxford University Press, 504 pp.
    • Manners, J., J.-C. Thelen, J. Petch, P. Hill, and J. M. Edwards, 2009: Two fast radiative transfer methods to improve the temporal sampling of clouds in numerical weather prediction and climate models. Quart. J. Roy. Meteor. Soc., 135, 457-468, doi:10.1002/qj.385.
    • McFarquhar, G. M., and A. J. Heymsfield, 1998: The definition and significance of an effective radius for ice clouds. J. Atmos. Sci., 55, 2039-2052, doi:10.1175/1520-0469(1998)055,2039: TDASOA.2.0.CO;2.
    • --, S. Iacobellis, and R. C. J. Somerville, 2003: SCM simulations of tropical ice clouds using observationally based parameterizations of microphysics. J. Climate, 16, 1643-1664, doi:10.1175/ 1520-0442(2003)016,1643:SSOTIC.2.0.CO;2.
    • --, J. Um, and R. Jackson, 2013: Small cloud particle shapes in mixed-phase clouds. J. Appl. Meteor. Climatol., 52, 1277-1293, doi:10.1175/JAMC-D-12-0114.1.
    • Mitchell, D. L., 2002: Effective diameter in radiation transfer: General definition, applications, and limitations. J. Atmos. Sci., 59, 2330-2346, doi:10.1175/1520-0469(2002)059,2330: EDIRTG.2.0.CO;2.
    • --, A. Macke, and Y. Liu, 1996: Modeling cirrus clouds. Part II: Treatment of radiative properties. J. Atmos. Sci., 53, 2967-2988, doi:10.1175/1520-0469(1996)053,2967: MCCPIT.2.0.CO;2.
    • --, P. Rasch, D. Ivanova, G. M. McFarquhar, and T. Nousiainen, 2008: Impact of small ice crystal assumptions on ice sedimentation rates in cirrus clouds and GCM simulations. Geophys. Res. Lett., 35, L09806, doi:10.1029/ 2008GL033552.
    • --, R. P. d'Entremont, and R. P. Lawson, 2010: Inferring cirrus size distributions through satellite remote sensing and microphysical databases. J. Atmos. Sci., 67, 1106-1125, doi:10.1175/ 2009JAS3150.1.
    • --, R. P. Lawson, and B. Baker, 2011a: Understanding effective diameter and its application to terrestrial radiation in ice clouds. Atmos. Chem. Phys., 11, 3417-3429, doi:10.5194/ acp-11-3417-2011.
    • --, S. Mishra, and R. P. Lawson, 2011b: Representing the ice fall speed in climate models: Results from Tropical Composition, Cloud and Climate Coupling (TC4) and the Indirect and SemiDirect Aerosol Campaign (ISDAC). J. Geophys. Res., 116, D00T03, doi:10.1029/2010JD015433.
    • Stephens, G. L., and Coauthors, 2012: An update on Earth's energy balance in light of the latest global observations. Nat. Geosci., 5, 691-696, doi:10.1038/ngeo1580.
    • Stocker, T. F., and Coauthors, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp. [Available online at www.climatechange2013.org/images/ report/WG1AR5_ALL_FINAL.pdf.]
    • van de Hulst, H. C., 1957: Light Scattering by Small Particles. Wiley, 470 pp.
    • Waliser, D., and Coauthors, 2009: Cloud ice: A climate model challenge with signs and expectations of progress. J. Geophys. Res., 114, D00A21, doi:10.1029/2008JD010015.
    • Walters, D., and Coauthors, 2011: The Met Office Unified Model Global Atmosphere 3.0/3.1 and JULES Global Land 3.0/3.1 configurations. Geosci. Model Dev., 4, 919-941, doi:10.5194/ gmd-4-919-2011.
    • --, and Coauthors, 2013: The Met Office Unified Model Global Atmosphere 4.0 and JULES Global Land 4.0 configurations. Geosci. Model Dev. Discuss., 6, 2813-2881, doi:10.5194/ gmdd-6-2813-2013.
    • Warren, S. G., and R. E. Brandt, 2008: Optical constants of ice from the ultraviolet to the microwave: A revised compilation. J. Geophys. Res., 113, D14220, doi:10.1029/ 2007JD009744.
    • Westbrook, C. D., R. C. Ball, P. R. Field, and A. J. Heymsfield, 2004: Theory of growth by differential sedimentation, with application to snowflake formation. Phys. Rev., 70E, 021403, doi:10.1103/PhysRevE.70.021403.
    • Williams, K. D., and M. J. Webb, 2009: A quantitative performance assessment of cloud regimes in climate models. Climate Dyn., 33, 141-157, doi:10.1007/s00382-008-0443-1.
    • Wood, N., and Coauthors, 2014: An inherently mass-conserving semi-implicit semi-Langrangian discretization of the deepatmosphere global non-hydrostatic equations. Quart. J. Roy. Meteor. Soc., 140, 1505-1520, doi:10.1002/qj.2235.
    • Wu, D. L., and Coauthors, 2009: Comparisons of global cloud ice from MLS, CloudSat, and correlative data sets. J. Geophys. Res., 114, D00A24, doi:10.1029/2008JD009946.
    • Wyser, K., and P. Yang, 1998: Average ice crystal size and bulk short-wave single-scattering properties of cirrus clouds. Atmos. Res., 49, 315-335, doi:10.1016/S0169-8095(98)00083-0.
    • Yang, P., and K.-N. Liou, 1998: Single-scattering properties of complex ice crystals in terrestrial atmosphere. Contrib. Atmos. Phys., 71, 223-248.
    • Yi, B., P. Yang, B. A. Baum, T. L'Ecuyer, L. Oreopoulos, E. J. Mlawer, A. J. Heymsfield, and K.-N. Liou, 2013: Influence of ice particle surface roughness on the global cloud radiative effect. J. Atmos. Sci., 70, 2794-2807, doi:10.1175/JAS-D-13-020.1.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article