Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Webberley, William M.; Allen, Stuart M.; Whitaker, Roger M. (2016)
Publisher: Elsevier BV
Journal: Computer Communications
Languages: English
Types: Article
Subjects: Computer Networks and Communications, QA75
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] A. Java, X. Song, T. Finin, B. Tseng, Why we Twitter: understanding microblogging usage and communities, in: Proceedings of the 9th WebKDD and 1st SNA-KDD 2007 Workshop on Web Mining and Social Network Analysis (WebKDD/SNA-KDD '07), ACM, New York, NY, USA, 2007, pp. 56-65. http://doi.acm.org/10.1145/1348549.1348556.
    • [2] D. Zhao, M.B. Rosson, How and why people Twitter: the role that micro-blogging plays in informal communication at work, in: Proceedings of the ACM 2009 International Conference on Supporting Group Work (GROUP '09), ACM, New York, NY, USA, 2009, pp. 243-252. http://doi.acm.org/10.1145/1531674.1531710.
    • [3] C. Castillo, M. Mendoza, B. Poblete, Information credibility on Twitter, in: Proceedings of the 20th International Conference on World Wide Web (WWW '11), ACM, New York, NY, USA, 2011, pp. 675-684. http://doi.acm.org/10.1145/ 1963405.1963500.
    • [4] S. Muralidharan, L. Rasmussen, D. Patterson, J.-H. Shin, Hope for Haiti: an analysis of Facebook and Twitter usage during the earthquake relief efforts, Public Relat. Rev. 37 (2) (2011) 175-177. http://dx.doi.org/10.1016/j.pubrev.2011.01.010.
    • [5] C. Wilson, A. Dunn, Digital media in the Egyptian revolution: descriptive analysis from the Tahrir Data sets, Int. J. Commun. 5 (2011) 1248-1272.
    • [6] E. Agichtein, C. Castillo, D. Donato, A. Gionis, G. Mishne, Finding high-quality content in social media, in: Proceedings of the International Conference on Web Search and Web Data Mining, ACM, 2008, pp. 183-194.
    • [7] O. Alonso, C. Carson, D. Gerster, X. Ji, S.U. Nabar, Detecting uninteresting content in text streams, in: SIGIR Crowdsourcing for Search Evaluation Workshop, 2010.
    • [8] W. Webberley, S. Allen, R. Whitaker, Inferring the interesting tweets in your network, in: Cloud and Green Computing (CGC), 2013 Third International Conference on, 2013, pp. 575-580, doi:10.1109/CGC.2013.100.
    • [9] I. Uysal, W.B. Croft, User oriented tweet ranking: a filtering approach to microblogs, in: Proceedings of the 20th ACM International Conference on Information and Knowledge Management(CIKM '11), ACM, New York, NY, USA, 2011, pp. 2261-2264. http://doi.acm.org/10.1145/2063576.2063941.
    • [10] M.J. Chorley, G.B. Colombo, S.M. Allen, R.M. Whitaker, Human content filtering in Twitter: the influence of metadata, Int. J. Hum.Comput. Stud. (2014). http://dx.doi.org/10.1016/j.ijhcs.2014.10.001.
    • [11] R.M. Whitaker, M. Chorley, S.M. Allen, New frontiers for crowdsourcing: the extended mind, in: Proceedings of the IEEE 48th Annual Hawaii International Conference on System Sciences, 2015, 2015.
    • [12] Y. Xu, Relevance judgment in epistemic and hedonic information searches, J. Am. Soc. Inf. Sci. Technol. 58 (2) (2007) 179-189. http://dx.doi.org/10.1002/asi.20461.
    • [13] W. Webberley, S. Allen, R. Whitaker, Retweeting: a study of message-forwarding in Twitter, in: Workshop on Mobile and Online Social Networks (MOSN), IEEE, 2011, pp. 13-18, doi:10.1109/MOSN.2011.6060787.
    • [14] Z. Yang, J. Guo, K. Cai, J. Tang, J. Li, L. Zhang, Z. Su, Understanding retweeting behaviors in social networks, in: Proceedings of the 19th ACM International Conference on Information and Knowledge Management(CIKM '10), ACM, New York, NY, USA, 2010, pp. 1633-1636. http://doi.acm.org/10.1145/1871437.1871691.
    • [15] T.R. Zaman, R. Herbrich, J. Van Gael, D. Stern, Predicting information spreading in Twitter, in: Workshop on Computational Social Science and the Wisdom of Crowds, NIPS, vol. 104, Citeseer, 2010, pp. 17599-17601.
    • [16] B. Suh, L. Hong, P. Pirolli, E. Chi, Want to be retweeted? large scale analytics on factors impacting retweet in Twitter network, in: Social Computing (SocialCom), 2010 IEEE Second International Conference on, 2010, pp. 177-184, doi:10.1109/SocialCom.2010.33.
    • [17] L. Hong, O. Dan, B.D. Davison, Predicting popular messages in Twitter, in: Proceedings of the 20th International Conference Companion on World Wide Web (WWW '11), ACM, New York, NY, USA, 2011, pp. 57-58. http://doi.acm.org/ 10.1145/1963192.1963222.
    • [18] S. Petrovic, M. Osborne, V. Lavrenko, RT to win! predicting message propagation in Twitter, in: ICWSM, 2011.
    • [19] N. Naveed, T. Gottron, J. Kunegis, A.C. Alhadi, Bad news travel fast: a content-based analysis of interestingness on Twitter, in: In: Proceedings of the ACM WebSci'11, ACM, 2011, pp. 1-7. http://doi.acm.org/10.1145/2527031.2527052.
    • [20] J. Zhu, F. Xiong, D. Piao, Y. Liu, Y. Zhang, Statistically modeling the effectiveness of disaster information in social media, in: Global Humanitarian Technology Conference (GHTC), 2011 IEEE, 2011, pp. 431-436, doi:10.1109/GHTC.2011.48.
    • [21] H.-K. Peng, J. Zhu, D. Piao, R. Yan, Y. Zhang, Retweet modeling using conditional random fields, in: Data Mining Workshops (ICDMW), 2011 IEEE 11th International Conference on, 2011, pp. 336-343, doi:10.1109/ICDMW.2011.146.
    • [22] H.B. Celebi, S. Uskudarli, Content Based Microblogger Recommendation, in: Proceedings of the 2012 International Conference on Privacy, Security, Risk and Trust and of the 2012 International Confernece on Social Computing (PASSAT, SocialCom), IEEE, 2012, pp. 605-610, doi:10.1109/SocialCom-PASSAT.2012.124.
    • [23] S. Kywe, E.-P. Lim, F. Zhu, A survey of recommender systems in twitter, in: K. Aberer, A. Flache, W. Jager, L. Liu, J. Tang, C. Guret (Eds.), Social Informatics, Lecture Notes in Computer Science, 7710, Springer Berlin Heidelberg, 2012, pp. 420- 433, doi:10.1007/978-3-642-35386-4_31.
    • [24] A. Guille, H. Hacid, C. Favre, D.A. Zighed, Information Diffusion in Online Social Networks: A Survey, SIGMOD Rec. 42 (2) (2013) 17-28, doi:10.1145/2503792.2503797.
    • [25] M.-C. Yang, J.-T. Lee, S.-W. Lee, H.-C. Rim, Finding Interesting Posts in Twitter Based on Retweet Graph Analysis, in: Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval(SIGIR '12), ACM, New York, NY, USA, 2012, pp. 1073-1074, doi:10.1145/2348283.2348475.
    • [26] J.M. Kleinberg, Authoritative sources in a hyperlinked environment, Journal of the ACM 46 (5) (1999) 604-632.
    • [27] L. Geng, H.J. Hamilton, Interestingness measures for data mining: a survey, ACM Comput. Surv. 38 (3) (2006).
    • [28] S. Mitra, S.K. Pal, P. Mitra, Data mining in soft computing framework: a survey, IEEE Trans. Neural Netw. 13 (1) (2002) 3-14.
    • [29] F. Hussain, H. Liu, E. Suzuki, H. Lu, Exception rule mining with a relative interestingness measure, in: T. Terano, H. Liu, A. Chen (Eds.), Knowledge Discovery and Data Mining. Current Issues and New Applications, Lecture Notes in Computer Science, 1805, Springer Berlin Heidelberg, 2000, pp. 86-97.
    • [30] S. Hidi, W. Baird, Interestingness a neglected variable in discourse processing, Cognit. Sci. 10 (2) (1986) 179-194.
    • [31] A. Silberschatz, A. Tuzhilin, On subjective measures of interestingness in knowledge discovery, in: Proceedings of the First International Conference on KDD, 95, 1995, pp. 275-281.
    • [32] S. Gransee, R. McAfee, A. Wilson, Twitter Retweet Prediction, 2012.
    • [33] A.C. Alhadi, T. Gottron, J. Kunegis, N. Naveed, LiveTweet: Microblog Retrieval Based on Interestingness and an Adaptation of the Vector Space Model, in: Proceedings of the 2011 Text REtrieval Conference (TREC'11), National Institute of Standards and Technology (NIST), 2011.
    • [34] A.C. Alhadi, T. Gottron, J. Kunegis, N. Naveed, LiveTweet: Monitoring and Predicting Interesting Microblog Posts, in: Advances in Information Retrieval, in: Lecture Notes in Computer Science, 7224, Springer Berlin Heidelberg, 2012, pp. 569-570, doi:10.1007/978-3-642-28997-2_66.
    • [35] H. Lauw, A. Ntoulas, K. Kenthapadi, Estimating the Quality of Postings in the RealTime Web, in: Proceedings of SSM Conference, 2010.
    • [36] H. Kwak, C. Lee, H. Park, S. Moon, What is Twitter, a Social Network or a News Media? in: Proceedings of the 19th International Conference on World Wide Web (WWW '10), ACM, New York, NY, USA, 2010, pp. 591-600. http://doi.acm.org/10.1145/1772690.1772751.
    • [37] N. Friedman, D. Geiger, M. Goldszmidt, Bayesian network classifiers, Mach. Learn. 29 (2-3) (1997) 131-163, doi:10.1023/A:1007465528199.
    • [38] M.J. Chorley, R.M. Whitaker, S.M. Allen, Personality and location-based social networks, Comput. Hum. Behav. 46 (2015) 45-56.
    • [39] E. Pariser, The filter bubble: What the Internet is hiding from you, Penguin UK, 2011.
    • [40] J. An, M. Cha, P.K. Gummadi, J. Crowcroft, Media landscape in Twitter: a world of new conventions and political diversity., in: International AAAI Conference on Weblogs and Social Media (ICWSM), 2011.
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects


Related to

  • fet-fp7FET Proactive: FET proactive 5: Self-Awareness in Autonomic Systems
  • fet-fp7FET Proactive: Relevance and cognition for self-awareness in a content-centric Internet

Cite this article